Multiple Filamentation of UV Supercritical Laser Beam in Atmospheric Air

V.D. Zvorykin (zvorykin@sci.lebedev.ru)

Contributors:

A.A. Ionin, A.O. Levchenko, L.V. Seleznev, D.V. Sinitsyn, I.V. Smetanin, N.N. Ustinovskii, and A.V. Shutov

P.N.Lebedev Physical Institute of the Russian Academy of Science

P.N. Lebedev Physical Institute of Russian Academy of Sciences

The 6th International Conference Channeling 2014 -Charged & Neutral Particles Channeling Phenomena Capri (NA), Italy, October 5-10, 2014

Outline

- History of laser beam filamentation and motivation for research:
- guiding of HV electric (lightning) discharges
- transport of MW radiation in plasma waveguides
- Filament induced breakdown spectroscopy (FIBS)
- backward atmospheric N₂ laser
- **Ti:Saphire/KrF GARPUN-MTW laser facility**
- Filamentation of supercritical UV laser radiation
- **Conclusions**

Historical notes

- Self-focusing (filamentation) of laser radiation was firstly suggested by Askar'yan (Sov. Phys. JETP, 1962, <u>15</u>, 1088) and observed by Pilipetskii & Rustamov in organic liquids for Q-switched 20 MW, ns laser pulses (JETP Lett., 1965, <u>2</u>, 55). For theory see Akhmanov et al, Sov. Phys. Usp. 1968, <u>10</u>, 609.
- Commonly observed in liquids and solids, filaments damage solid-state laser amplifiers and put power limit for short pulses (Basov, et al, *Sov. Phys. JETP*, 1966, <u>23</u>, 16).
- With Ti: Sapphire laser, which generates ultra-short pulses (USP) in fs range at wavelength ~ 800 nm, filamentation was also observed in atmospheric air (Braun et al. *Opt. Lett,* 1995, <u>20</u>, 73); nowadays it has a big room for applications.
- KrF laser due to a short radiation wavelength λ =248 nm, unique possibility to generate pulses of different waveforms and duration from subps to 100 ns can produce extended plasma channels for various applications.

Amplification of a train of ps, sub-TW UV pulses at Ti:Saphire/KrF GARPUN-MTW Laser

Zvorykin et al, *Quantum electron*. 2014, <u>44</u>, 431.

Simultaneous amplification of ps pulse train and 100-ns UV pulses at Ti:Saphire/KrF GARPUN-MTW laser

Combination of the USP train and 100-ns lasing pulse is an effective tool for air ionization and maintenance electron density in a plasma channel for a long time, while spatial matching of both radiations is an issue.

Guiding of HV discharge by combined UV radiation

A combined laser pulse produces long ionization trace in air which initiates HV discharge and guides it along 70-cm gap.

Zvorykin et al, *Quantum electron*. 2013, <u>43</u>, 239.

A sliding-mode hollow-core plasma waveguide for directed transfer of MW radiation

- Firstly proposed by Askar'yan (Sov. Phys. JETP, 1969, <u>28</u>, 732) with a powerful tubular UV laser beam as a source for multi-photon air ionization. It was realized with 1 GW, 100 ns KrF laser (V.D. Zvorykin, et al, 2010, Bull. of Lebedev Phys. Inst, <u>37</u>, 60; V.D. Zvorykin, et al, 2010, JETP Lett. 2010, <u>91</u>, 226).
- > As a refractive index in air plasma is slightly less than in air, for waveguide radius $R_{wg} >> \lambda_{MW}$ internal reflection at the air-plasma boundary confines radiation in the central core of a waveguide. Physically this sliding-mode regime is similar to light propagation in optical fibers.

USP train or combined radiation seems to be the most attractive to produce a sliding-mode waveguide consisting of plasma filaments (Zvorykin et al. *Appl. Opt.* 2014, <u>31</u>).

Comparison of filamentation of IR and UV radiation

Wavelength λ , nm	800	248
$n_2, \text{ cm}^2 \cdot \text{W}^{-1}$	$(2.8 - 3.0) \cdot 10^{-19}$	(8–10)·10 ⁻¹⁹
<i>P_{cr}</i> , GW	3.4–3.6	0.1–0.12
$O_2(W_i = 12.06 \text{ eV}): K; \sigma_K, \text{ s}^{-1} \cdot (\text{cm}^2 \cdot \text{W}^{-1})^K$	8; 2.8·10 ⁻⁹⁶	3; 1.4·10⁻²⁸
N ₂ (W_i =15.58 eV): K ; σ_K , s ⁻¹ ·(cm ² ·W ⁻¹) ^{K}	11; 6.3 ·10 ⁻¹⁴⁰	4; 3.2·10 ⁻⁴⁴

Parameters of single filaments for the IR and UV radiation (according to Couairon & Berge calculations)

 According to scaling formulas and numerical simulations (PRL, 88, 135003 (2002)) peak intensities in single filaments *I*~10¹³ W/cm², electron densities $\rho \sim 10^{16} \div 10^{17} \, \text{cm}^{-3}$, and filament size $w_0 \sim 100 \ \mu m$ are approximately equal for both UV and IR wavelengths. •A big room for experimental values for UV radiation still exists. Present experiments were performed at frequencytripled Ti:Sapphire front-end ($\tau_{1/2}$ ~ 100 fs) of GARPUN-MTW laser facility to find

FIG. 2. (a) Beam radius, (b) peak intensity, and (c) electron critical power and diameter of density as functions of z for a UV pulse (left column) and an **filaments.**

Filaments registration

0.0

0.0

cm length which is much more than diffraction (Reyleigh) length of focused beam.

1.0

Single filaments of 100-fs UV laser pulse For higher peak powers of 100-fs UV USP $10 \cdot P_{cr} \ge P \ge P_{cr}$ a single filament of $d_{0.5} \approx 100 \,\mu\text{m}$ diameter was observed

For lower powers $P \leq P_{cr}$ filaments were not observed while $d_{0.5} \approx 130 \,\mu\text{m}$

Multiple filamentation of a supercritical UV laser beam

- •For $P >> P_{cr}$ modulation instability breaks the beam to multiple filaments (Campillo et al., *Appl.Phys. Lett.*, 1973, <u>23</u>, 628.
- Theory of the linear power partitioning (Roskey et al, Appl. Phys. B, 2007, <u>86</u>, 249) predicts that a number of filaments is $N \sim P/P_{cr}$, while experiments with very high 100 TW peak power at $\lambda \sim 800$ nm evidence about saturation of filaments density due to their mutual interaction (Henin et al, Appl. Phys. B, 2010, <u>100</u>, 77).
- •For UV laser beam at λ =248 nm wavelength filamentation is 30 times easier to achieve that enables us to investigate multifilamentation dynamics at TW power level available at GARPUN-MTW laser facility.
- •Filamentation of a single USP of ~1ps pulse duration and sub-TW peak power ($P/P_{cr} > 1000$) is compared with filamentation of a USP train when they both propagate along 100-m distance in various focusing geometries.

Multiple filamentation of 1-ps UV USP beam

80 mm

 $E_1 = 0.23 \text{ J}; P_1 \approx 2000 \times P_{cr}; z = -75 \text{ m}$

About 500 filaments contain 30% of the total pulse energy while the rest is in the background radiation. Filaments are grouped along the boundaries of CaF_2 window blocks, which introduce phase aberrations into the beam. Diameter of filaments is in the range 240–340 µm.

Parameters of multiple filaments of UV USP beam

• Filaments for 1-ps UV USP are quite different of those for 100-fs pulse: their diameter is 3 times bigger, while intensity and electron density are lower in 10² and 10³ times.

• Diffraction balances Kerr self-focusing instead of plasma defocusing.

• Resonance processes (REMPI instead of direct MPI and SRS) supposedly give additional input into nonlinear matter polarization. Absorbed laser energy:

$$\frac{dE}{dz} = \kappa E = 1.2 \cdot 10^{-5} \,\text{J/cm} \left(\text{for } E = 0.2 \,\text{J}\right)$$

Number of electrons per beam length:

 $\frac{dN_e}{dz} = \frac{1}{3h\nu} \frac{dE}{dz} = 5 \cdot 10^{12} \text{ cm}^{-1} (\text{for } h\nu = 5\text{eV})$ Number of filaments: $N_f \approx 500$

Number of electrons per filament length:

$$\frac{dN_{ef}}{dz} = \frac{1}{N_f} \frac{dN_{ef}}{dz} = 10^{10} \,\mathrm{cm}^{-1}$$

Electron density in filaments:

$$\rho = \frac{1}{S_f} \frac{dN_{ef}}{dz} = (1.5 \pm 0.5) \cdot 10^{13} \text{ cm}^{-3},$$

where
$$S_f = \frac{\pi d_f^2}{4}; d_f = (290 \pm 50) \,\mu\text{m}$$

Power in a filament: $P_f = 0.3P/N \approx 1.2 \cdot 10^8 \text{ W} \approx P_{cr}$

Intensity in filaments: $I = P_f/S_f = (1.8\pm0.6) \cdot 10^{11} \text{ W/cm}^2$

Air ionization by UV radiation

Focusing of a multiply-filamented USP beam (F = 100 m)

 $E_1 = 0.23 \text{ J}; P_1 \approx 2000 \times P_{cr}$

z=-75 m

z=- 50 m

z=0

Linear focusing was observed for multiply-filamented UV USP beam which allows us to combine it with low-intensity 100-ns lasing pulse.

Multiple filamentation of USP beam in dependence on power (*F* = 60 m; *z* = - 22.5 m)

*E*₁=0.16 J; *P*₁=1330×*P*_{cr}

 $E_1 = 0.084 \text{ J}; P_1 = 700 \times P_{cr}$

 $E_1 = 0.048 \text{ J}; P_1 = 400 \times P_{cr}$

*E*₁=0.016 J; *P*₁=133×*P*_{cr}

$$E_1 = 0.004 \text{ J}; P_1 = 33 \times P_{cr}$$

30 mm

- In front of the linear focus a number of filaments decreases for lower USP energy.
- •At E_1 =0.004 J (P_1 = 0.004 TW = 33 P_{cr}) individual filaments coalesce into hot spots of bigger size ~1 mm.

Filamentation of a single USP behind the focus (F = 60 m)

Multiple filamentation of USP train (F = 6.75 m) Single pulse Pulse t

- •Linear beam focusing was observed for a single USP; •For the USP train individual small-size filaments tend to coalesce into hot spots of bigger size ~1 mm;
- This effect is the most pronounced nearby the focus;
- •Behind the focus multifilamentous structure reappears with the same tendency towards coalescence of individual filaments for the USP train.

CONCLUSIONS

- A train of UV picoseconds pulses with TW peak power was generated at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility. It can be combined with 30-J, 100-ns pulse of a free-running lasing.
- Multiple filamentation of a single 1-ps UV pulse, as well as the pulse train with peak powers P/P_{cr} >1000 was investigated in air along 100-m distance. In various focusing geometries (NA=1.5·10⁻²- 1.5·10⁻³) multi-filamentous supercritical single-pulse beam demonstrated linear focusing behavior. For lower power as well as for the pulse train coalescence of individual filaments into 1mm size hot spots was observed.
- Parameters of filaments for 1-ps pulse are quite different of those for 100-fs pulse. Radiation diffraction balances Kerr self-focusing instead of plasma defocusing. Probably resonance processes (REMPI and SRS) introduce into nonlinear matter polarization.