

Channeling 2014

5-10 October 2014 Capri-Naples, Italy

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Alexey Petrenko on behalf of the AWAKE Collaboration

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- Experimental Facility at CERN
- Planning
- Next Steps
- Summary

What is the AWAKE experiment?

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven plasma wakefield experiment worldwide
 - First beam expected in 2016
- AWAKE Collaboration: 14 Institutes world-wide:

3

Motivation

- Accelerating field of today's RF cavities is limited to <100 MV/m
 - Several tens of kilometers for future linear colliders
- Plasma can sustain up to three orders of magnitude higher gradient
 - SLAC (2007): electron energy doubled from 42GeV to 85 GeV over 0.8 m \rightarrow 52GV/m gradient
 - However to reach 1 TeV energy with 50 GeV drive beam will require 20 stages. Similar staging
 problem exists for laser-driven plasma wakefield accelerators.

Why protons?

• There are proton beams available at CERN with TeV scale energy per particle and huge total stored energy. For example:

LHC nominal beam parameters:

(2808 bunches)*(1.15e11 protons)*(7 TeV) = 360 MJ

Fully loaded A320 (80 t) at take-off speed (300 km/h) carries similar amount of kinetic energy (280 MJ). (However the momentum of the airplane is ~ $c/v \sim 10^6$ times larger than the LHC beam momentum)

Single LHC proton bunch (7 TeV, 1.2e11 protons) carries 130 kJ Single SPS proton bunch (0.4 TeV, 3e11 protons) carries 19 kJ Single ILC electron bunch (0.5 TeV, 2e10 e+/e-) carries 1.6 kJ

Using LHC beam as a driver it's possible to obtain TeV-level (e-/e+/muons) in a single stage!

Motivation

A. Caldwell, K. Lotov, A. Pukhov, F. Simon, Nature Physics (2009):

Unfortunately compressing 12 cm long LHC bunch down to $\sigma_z = 0.1$ mm is very challenging and expensive (although technically possible).

Motivation

N. Kumar, A. Pukhov, K. Lotov, Phys. Rev. Letters (2010):

Self-modulation instability of a long proton bunch in plasma

(Very similar to Raman self-modulation of long laser pulses -- LWFA with long laser beams, before the invention of chirped pulse compression)

Self-modulated proton bunch resonantly driving plasma wakefields.

The AWAKE experiment configuration & baseline parameters:

Plasma density, n_0	$7 \times 10^{14} \mathrm{cm}^{-3}$		
Plasma length, $L_{\rm max}$	$10\mathrm{m}$	Proton bunch energy spread, δW_b	0.35%
Atomic weight of plasma ions, M_i	85.5	Proton bunch normalized emittance, ϵ_{nb}	$3.6\mathrm{mmmrad}$
Plasma skin depth, $c/\omega_p \equiv k_p^{-1}$,	$0.2\mathrm{mm}$	Proton bunch maximum density, n_{b0}	$4\times 10^{12}{\rm cm}^{-3}$
Initial plasma radius, r_0 ,	$1.5\mathrm{mm}$	Electron bunch population, N_e	1.25×10^9
Final plasma radius, r_1 ,	$1\mathrm{mm}$	Electron bunch length, σ_{ze}	$1.2\mathrm{mm}$
Wavebreaking field, $E_0 = mc\omega_p/e$,	$2.54\mathrm{GV/m}$	Electron bunch radius, σ_{re}	$0.25\mathrm{mm}$
Proton bunch population, N_b	3×10^{11}	Electron bunch energy, W_e	$16{ m MeV}$
Proton bunch length, σ_{zb}	$12\mathrm{cm}$	Electron bunch energy spread, δW_e	0.5%
Proton bunch radius, σ_{rb}	$0.2\mathrm{mm}$	Electron bunch normalized emittance, ϵ_{ne}	$2\mathrm{mmmrad}$
Proton bunch energy, W_b	$400{ m GeV}$	Electron bunch delay, ξ_e	$16.4\mathrm{cm}$

Outline

Motivation

• AWAKE at CERN

- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE at CERN

AWAKE at CERN

- Running underground facility
- Desired beam parameters
- → adequate site for AWAKE

AWAKE at CERN

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE Experimental Layout: 1st Phase

- Perform **benchmark experiments using proton bunches** to drive wakefields for the first time ever.
- Understand the physics of self-modulation instability processes in plasma.

- → SPS proton bunch experiences **Self-Modulation Instability** (SMI) in the plasma.
- → Laser ionizes the plasma and seeds the SMI in a controlled way.
- → 10 m long plasma cell: **Rubidium vapor** source, $n_e = 7x10^{14}$ cm⁻³.

Laser Beam					
Laser type	Fiber Ti:Sapphire				
Pulse wavelength	λ ₀ = 780 nm				
Pulse length (FWHM)	200 fs				
Pulse energy (after compr.)	450 mJ				
Laser power	2 TW				
Focused laser size	σ _{x,y} = 1 mm				
Energy stability	±1.5% r.m.s.				
Repetition rate	10 Hz				

plasma

gas

laser pulse

proton bunc

Self-Modulation-Instability Diagnostics

Measure the characteristics of the proton beam after propagating through the plasma cell.

- Optical Transition Radiation (OTR):
 - Time-resolve bunch radius variation with streak-camera (~100fs resolution)
 - Measure relative phasing of laser pulse, proton bunch and electron bunch
- Coherent Transition Radiation (CTR) and Transverse Coherent Transition Radiation (TCTR)
 - High frequency (${}^{r}f_{p} = 237.5 \text{ GHz}$)
 - Broadband detection scheme (500 GHz)

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE Experimental Layout: 2nd Phase

• **Probe the accelerating wakefields with externally injected electrons**, including energy spectrum measurements for different injection and plasma parameters.

Electron beam				
Momentum	16 MeV/c			
Electrons/bunch (bunch charge)	1.2 E9 (0.2 nC)			
Bunch length	σ _z =4ps (1.2mm)			
Bunch size at focus	σ [*] _{x,y} = 250 μm			
Normalized emittance (r.m.s.)	2 mm mrad			
Relative energy spread	$\Delta p/p = 0.5\%$			
Beta function	$\beta_{x}^{*} = \beta_{y}^{*} = 0.4 \text{ m}$			
Dispersion	$D_{x}^{*} = D_{y}^{*} = 0$			

Laser beam for electron source					
Laser type	Ti:Sapphire Centaurus				
Pulse wavelength	λ_0 = 260 nm				
Pulse length	10 ps				
Pulse energy (after compr.)	50 µJ				
Electron source cathode	Copper				
Quantum efficiency	3.00 E-5				
Energy stability	±2.5% r.m.s.				

AWAKE Experimental Layout: 2nd Phase

- Laser and electron beam synchronized at the < 1 ps level.
- Electron bunch is externally injected into the plasma cell, on-axis and collinearly with the proton and laser beam.
- **On-axis injection** point is upstream the plasma cell.

AWAKE Experimental Layout: 2nd Phase

On-axis injection: animation of electron trapping and acceleration

Electrons are trapped from the very beginning by the wakefield of seed perturbation
Trapped electrons make several synchrotron oscillations in their potential wells
After z=4 m the wakefield moves forward in the light velocity frame

The baseline AWAKE accelerated electron beam:

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

AWAKE Experimental Facility at CERN

Laser System

Ti: Sapphire laser system:

- Laser with 2 beams (for plasma and e-gun)
- Delay line in either one of both beams
- Focusing telescope (lenses, in air) before compressor
- 35 meter focusing
- Optical compressor (in vacuum)
- Optical in-air compressor and 3rd harmonics generator for electron gun

Complete UHV vacuum system up to 10⁻⁹ mbar starting from optical compressor

New tunnel

Proton Beam Line

Change of the proton beam line only in the downstream part (~80m)

Present CNGS Layout (end of the line)

Laser-proton merging 20m upstream the plasma cell

→ Displace existing magnets of the final focusing to fulfill optics requirements at plasma cell

→ Move existing dipole and **4 additional dipoles** to create a **chicane for the laser mirror** integration.

Rubidium Vapour Plasma Cell

 $\Delta n/n = \Delta T/T \leq 0.002$

- Density adjustable from 10¹⁴ 10¹⁵ cm⁻³
- 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb vapour using laser pulse (~1.7 10¹² W/cm²)
- − System is oil-heated \rightarrow keep temperature uniformity \rightarrow density uniformity

Ultra-fast (15 ms) valves > 40 000 cycles!

3m prototype

Temperature profiles along the heat exchanger Measurements remain < \pm 0.1 K

ARATON SOUTCE, KIVS

10 Ma

Electron – Source

- Baseline:
 - Photo injector (**PHIN**) from CTF2 at CERN (5 MeV electrons)
 - Klystron and modulator from CTF3
 - Booster from Cockcroft/Lancaster 5 MeV → 20 MeV
- Optimize and test performance of complex system.
 - use as test area after 2015.

Electron Beam Line

About two months ago:

Now:

Laser tunnel has been excavated recently also.

Electron Spectrometer

- Measure **peak energy and energy spread** of electrons.
- Spectrometer magnet separates electrons from proton beam-line.
- Dispersed electron impact on scintillator screen.
- Resulting light collected with intensified CCD camera.

Photo

15 t	8.5 t	
60 kW	15 kW rms & 24 kW cycled	
1.9 T*m	1.3 T*m rms & 1.6 T*m cycled	
1.65 T	1.2 T rms & 1.5 T cycled	
52 cm	32 cm	
11 cm	8 cm	
1 m	1 m	
1.7 m	1.6 m	
1.2 m	1.3 m	
545 A	400 A rms & 500 A cycled	Camera
	and the second second second	an man and a state of the state
	15 t 60 kW 1.9 T*m 1.65 T 52 cm 11 cm 1 m 1.7 m 1.2 m 545 A	15 t 8.5 t 60 kW 15 kW rms & 24 kW cycled 1.9 T*m 1.3 T*m rms & 1.6 T*m cycled 1.65 T 1.2 T rms & 1.5 T cycled 52 cm 32 cm 11 cm 8 cm 1m 1 m 1.7 m 1.6 m 1.2 m 1.3 m 545 A 400 A rms & 500 A cycled

Scintillator screen

Outline

- Motivation
- AWAKE at CERN
- AWAKE Experimental Layout: 1st Phase
- AWAKE Experimental Layout: 2nd Phase
- AWAKE Experimental Facility at CERN
- Planning
- Next Steps
- Summary

Planning

	20	13	2014	2015	2016)	2017		2018	2019	2020
Proton beam- line			Study, Design, Procurement, C	Insta Component prepa	llation	Commi	Data taki	ing	< 18	LS2 months	Data taking
Experimental area			Modification, Civil Engineering and installation Study, Design, Procurement, Component preparation				Phase 1	1			
Electron source and beam-line			Studies, design	Fabi	rication		Installation	ning	Phase	2	

- AWAKE was approved in August 2013
- 1st Phase: First proton and laser beam in 2016
- **2nd Phase:** first electron beam in 2017
- Physics program for 3 4 years

Run-scenario	Nominal
Number of run-periods/year	4
Length of run-period	2 weeks
Total number of beam shots/year (100% efficiency)	162000
Total number of protons/year	4.86×10 ¹⁶ p
Initial experimental program	3 – 4 years

Next Steps

- **Split-cell mode**: SMI in 1st plasma cell, acceleration in 2nd one.
- New scalable uniform plasma cells (helicon or discharge plasma cell)
- Step in the plasma density \rightarrow maintains the peak gradient
- Need ultra-short electron bunches (> 300fs) \rightarrow bunch compression \rightarrow Almost 100% capture efficiency

A. Caldwell, K. V. Lotov, Phys. Plasmas 18 (2011) 103101

Summary

- AWAKE is proof-of-principle accelerator R&D experiment currently being built at CERN.
 - First proton-driven wakefield acceleration experiment
 - The experiment opens a pathway towards plasma-based TeV lepton collider.
 - 400 GeV SPS proton beam as drive beam
 - 10-20 MeV electrons as witness beam
 - 2 TW laser beam for plasma ionization and seeding of the SMI
- AWAKE program
 - Study the physics of self-modulation instability as a function of plasma and proton beam parameters (1st Phase, 2016)
 - Probe the longitudinal accelerating wakefields with externally injected electrons (2nd Phase, 2017-2018)
 - Develop long scalable and uniform plasma cells, production of shorter electron and proton bunches (2020)

Many thanks to all members of the AWAKE collaboration, especially to Allen Caldwell and Edda Gschwendtner!