Channeling Experiments with Sub-GeV Electrons in Flat and Periodically Bent Silicon Single Crystals

H. Backe, W. Lauth for the X1 Collaboration at Institute for Nuclear Physics University of Mainz, Germany

The 6th International Conference Channeling 2014 - Charged & Neutral Particles Channeling Phenomena Capri (NA), Italy, October 5-10, 2014

Outline

- 1. Introduction
- 2. Dechanneling length measurements for plane silicon crystals in (110) orientation Reanalysis
- 3. Experiments with a graded composition strained layer $Si_{1-x}Ge_x$ large amplitude undulator
- 4. Outlook
- 5. Conclusions

Floor Plan of the Mainz Microtron MAMI Facility

2. Dechanneling length measurements for plane silicon crystals in (110) orientation

Reanalysis of published measurements W. Lauth, H. Backe, P. Kunz, A. Rueda, Int. Jour. Mod. Phys. **A 25** (2010) 136

Measurement of signal hight as function of the silicon single crystal thickness

Analysis with rate equation

Results for Dechanneling-Length Measurements for Electrons

3. Experiments with a graded composition strained layer $Si_{1-x}Ge_x$ large amplitude undulator

John Lundsgaard Hansen, Arne Nylandsted, Ulrik I. Uggerhøj (Molecular Beam Epitaxy) MBE-Group Department of Physics and Astronomy University of Aarhus

Germanium Content and Amplitude Distribution (110) plane

Radius of curvature

Synchrotron-like Radiation Emission from Finite Arc Element of Undulator

Schwinger's approach $T_1 \rightarrow -\infty, T_2 \rightarrow \infty$

Calculations at E_{beam} = 375 MeV 4-Period Undulator with λ_U = 9.9 µm and A_{max} = 4.64 Å

Expected Spectrum at E_{beam} = 375 MeV 4-Period Undulator with λ_U = 9.9 µm and A_{max} = 4.64 Å

Deconvoluted Photon Spectra at (110) Planar Channeling for Plane and Undulator Crystals

Beam Energy 375 MeV

Crystal Thickness 50 μ m resp. 39.6 μ m

Deconvoluted Difference Spectra (Off-Channeling Contribution Subtracted)

Beam Energy 375 MeV

Some indication of a peak at the right energy. However, line shape is strongly asymmetric.

Evidence for Undulator Radiation Simulation Results at $E_{beam} = 375 \text{ MeV}$

Why is the coherent contribution so small?

Red: Channeling Domains Blue: Dechanneling Domains White: Rechanneling Domains

4. Outlook

Investigation of the undulator with the method of X-ray topography at the ESRF in Grenoble

X-ray topography of the Si_xGe_{1-x} undulator with (220) reflection at ESRF (Grenoble)

Snap-shot at a fixed rocking position Nearly perfect crystal

Only very few misfit dislocations

Courtesy of Jürgen Härtwig from ESRF Grenoble

Snap-shot at a fixed rocking position Si_{1-x}Ge_x undulator crystal

? Not allowed to show results ?

Preliminary results of measurements at ESRF indicate a very dense networks of misfit dislocations

Courtesy of Jürgen Härtwig and Thu Nhi Tran Thi

5. Conclusions

- Experimental results at MAMI energies below 855 MeV for (110) planar channeling exhibit quantum state phenomena
- The same may be true for (111) channeling in a bent crystal still at 855 MeV
- Experiments with a 4-period $\lambda_U = 9.9 \ \mu m$ strained layer Si_{1-x}Ge_x crystal undulator at MAMI reveal evidence for emission of undulator radiation
- Detailed investigation of undulator quality with X-ray topography at synchrotron radiation facility ESRF (Grenoble) is in progress

H. Backe W. Lauth Institute for Nuclear Physics University of Mainz

K.K. Andersen Rune Mikkelsen T. N. Wistisen S. Yilmaz J. Lundsgaard Hansen Ulrik I. Uggerhøj

Department of Physics and Astronomy University of Aarhus

A. Mazzolari,

E. Bagli

L. Bandiera

V. Guidi

A. Berra, D. Lietti, M. Prest

E. Vallazza

D. De Salvado

Dipartimento di Fisica e Scienze della Terra Università di Ferrara

Università dell'Insubria Como INFN Sezione di Trieste INFN Laboratori Nazionali die Legnaro and Dipartimento di Fisica, Università di Padova