
Channeling and Channeling radiation from 

Imperfect crystals with Dislocations, Stacking 

Faults and Anharmonic interactions

A.P. Pathaka ,S.V. S. Nageswara Raoa and V.S. Vendamania,b

aSchool of of Physics,University of Hyderabad, Hyderabad,500046 India.
bDepartment of Physics, Pondicherry University, Puducherry 605014, India.





3



 Scattering process

 Influence of crystal lattice on the trajectory of ions

Ref:  L .C. Feldman and J.W. Mayer, Fundamentals of surface and Thin film Analysis, North-Holland,Newyork,(1986);  A.P. 
Pathak, Nuclear instr. and methods in phys. Res. R 

Ion Channeling

minr



 Defects in crystals

 Structural and crystalline order

 Location of impurity atoms

Applications



+

Ion Channeling

-









Backscattering spectrum
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Inter-atomic potential for planar channeled positron

 Scattering yield vs Incident angle (or occupation probability)

 Crystal structure, lattice location of host and impurity atoms,        

lattice strains and defects

Ref:  S.V.S. Nageswara Rao, Nuclear instr. and methods in phys. Res. B 202 (2003) 312-316

Positron planar channeling angular scans in quantum mechanical 
framework
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 Channeling angular scan and its FWHM determine the 

channeling critical angleΨ

? To verify E-1/2 relation--- applicability for the channeling of

light relativistic particles (in quantum region)

2
1

 E { in classical region)

Ref:  J.U. Andresen, et al

Energy dependence

Lower energy regime (ground st.)

• Easy to understand the energy dependence

• 5 MeV positron channeled along 

{111} plane of Al
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Relativistic case:
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 Decreases with increase in energy E ----but not just as E-1/2

The standard E-1/2 relation is not strictly applicable for relativistic 

positrons



 Channeling angular scan is superposition of all available states

It is not fitting exactly as E-1/2

High energy regime (including all States)

Fitting exactly as E-1/2 when it 

enters into  classical region



Inter-atomic potential for planar channeled positron
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Anharmonic effects on positron channeling angular scans



Occupation probability of any energy level (N)
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15 MeV positrons channeled along {111} planes of single 
crystal aluminum (nmax=3)

Total occupation  probability 
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Types of defects

Zero dimension – vacancy, substitutional,  

interstitial

One dimension – dislocation, slip

Two dimension– stacking fault, twins, Grain 

boundary

Three dimension - voids
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 The Model
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The Schrödinger Equation for planar channeling

Region I
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Region II

The Schrödinger Equation

The transverse potential due to the curved atomic planes is also assumed as

harmonic around the central region

Separation of variables gives the azimuthal  equation

with solution

and radial equation.
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with

Effective potential 
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Region III

The Schrödinger Equation

Separation of variables gives the azimuthal  eqn.

with solution

and radial eqn.
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Region IV

Region 4 is a perfect channel, wavefunction of positron in this region is of the

same form as in the 1st region
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Boundary Conditions
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The Reflection and Transmission co-efficient in terms of the various

parameters of the dislocation affected channel
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Effects of dislocation and anharmonic

interaction on channeling radiation

31



Region I

The periodic potential of a positron including the anharmonic term is

where

In the region I the total transverse energy can be written as

The wavefunction in this region is given by
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Region II

The Schrodinger  equation for the region, 

where

Separating variables, the azimuthal and radial equations,

The effective potential after including the centrifugal term is given by,
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The effective potential, 

Where

and wavefunction in this region
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Region III

The effective potential

After simplification, 

where
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Wavefunction in region III

Region IV

Wavefunction in the region (straight channel) where there are only 

transmitted waves
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The Schrödinger Equation for electron planar channeling

Region I

Equations for the transverse and longitudinal motion, 

0xIf       is the initial amplitude of the channelon

After including the effects of several transverse states, we can write
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Region II

The Schrödinger Equation

The transverse potential due to the curved atomic planes is assumed to

shift with respect to lattice plane, due to curvature;

Separation of variables gives the azimuthal  equation

with solution
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Effective potential for electron case 

39

After including the effects of several transverse states
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Effective potential is given by

After including the effects of several transverse states
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Region IV

Region 4 is a perfect channel, wavefunction of electron in this region is of the

same form as in the 1st region
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The Reflection and Transmission co-efficients in terms of the various

parameters of the dislocation affected channel
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 For a relativistic particle, the emission process is considered in the rest

frame of the particle moving through the crystal.

 Since the crystal is rushing back at a speed –v, it appears Lorentz-

contracted



d
d R 

  EE
R



V RV

Lab Frame

Rest Frame

V RV
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The emission in the rest frame is observed in the lab frame






cos1

0


L

The maximum frequency is in the forward direction,      

i.e., at θ = 0 ( = 1)

0

22  m

The frequency in the rest frame

0 R
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 A channel which is periodically bent

 Channeling of ultra relativistic positively charged particles

A crystalline Undulator consist of

Channeling takes place if the maximum centrifugal force due to the bending is 

less than the maximal force due to the interplanar field.

Crystalline Undulator



We consider a crystal whose planes are periodically bent following a 

perfect harmonic shape

The transverse and longitudinal coordinates of a channeled particle in such 

a periodically bent crystal

Where a is the amplitude of bending of the channel and
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Region I & IV

The Schrödinger Equation for planar channeling

Region II & III

Centrifugal force proportional to 2/0
2 is responsible for the curved

regions of the channel.

2=l(l+1) with l as the orbital angular momentum quantum number and

0 is the radius of curvature of the channel.
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Assume that a finite number of undulator periods are there

in a length of the dislocation affected region of the channel.

If d is the wavelength of the dislocation affected region and

xd is the corresponding amplitude of the waves

Both these waves can be written in the form

Addition of the waves gives

Where A and  are the effective amplitude and phase of

the final wave.

Amplitude is no longer constant 

but varies periodically with 

respect to the depth
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Ta

V
V




)~(
)(

0

0




With the channel periodically bent, the radius of curvature of the dislocated

affected region,

Larger the value of a, larger is

the variation of with z.
0

~
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Assume a finite number of undulator periods in a length of the

dislocation affected region of the channel (low or medium dislocation

concentration). If d is the wavelength of the dislocation affected region

and xd is the corresponding amplitude of the waves

The equation of motion of both the waves

Superposition of the two waves gives

Where A and  are the effective amplitude and phase of the final wave.
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The Schrödinger Equation

With the channel periodically bent, the radius of curvature of the dislocated

affected region,
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The variation of parameters of the dislocation affected region with dislocation

density,

Range of various parameters of the periodically bent channel affected with

dislocation corresponding to a dislocation density of 108/cm2,



When d < u

53

Range of various parameters of the periodically bent channel

affected with dislocation at u= 2 d

Equation of motion,
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The maximum amplitude of oscillation

And the equilibrium axis shifts to,

The period of oscillation of the particle in the channel,
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The reflection and transmission coefficients FOR ELECTRONS case

Dislocations in a periodically bent crystal changes the channeling and

dechanneling coefficients by the parameters of the crystalline undulator.
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For low dislocation density, λd > λu , the

channelled particle SEES the effects of

dislocations because several undulations of

crystalline undulator are within one period of

dislocation affected channel.

In the opposite case of λd < λu , (High

dislocation density) the undulator effects are

largely UNEFFECTED by dislocations,

because dislocation affected regions are like

point defects on the scale of undulator affected

regions



+
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Channelons in Stacking 

Faults



Positron channeling  in Stacking 

Faults

• Quantum model[1]

• Energy dependence[2]

[1] L. N. S. Prakash Goteti, Anand P. Pathak, J. Phys. C 9 

(1997) 1709.

[2] V.S. Vendamani, S.V.S. Nageswara Rao, Nucl. Instr. Meth. 

Phys. Res. B 268      (2010) 2312–2317.



Dechanneling probability varies as (in classical region)

- point defects E-1/2

- dislocations E

- stacking fault E0 (independent of incident energy)

? To verify whether this relation is applicable for light   

relativistic particles (in quantum region)

Ref:  A.P. Pathak, Rad. Eff. 61, 1 (1982); J.J. Quillico and J.C. Jousset, Phys. Rev. B 11, 1791 (1975) 

Channeling on stacking faults

• Mismatched stacking sequence

Effects of stacking fault on positron planar channeling – energy 
dependence (Harmonic potential) 
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 Characterize the nature of defects present in crystals 

Well channeled configuration (all particles are in grd. St.)
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Energy dependence 

Decrease with increase in energy Increase with increase in energy



Channeling and dechanneling probabilities for ground state

Total channeling and dechanneling probabilities 

 Total channeling probability decreases with increase in energy.

 Decreasing for increasing staking shift.
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Effects of stacking fault on positron planar channeling – energy 
dependence (Anharmonic potential) 



• Well channeled  configuration
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 Decreases with increase in energy and saturates as the system approaches to

classical regime.



Dechanneling probability follows similar trend in both anharmonic and

harmonic cases.

Anharmonic approximation is found to be less when compared to harmonic

approximation.
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• Initially well channeled  configuration



Saturation of energy dependence occurs

for lower energies in anharmonic

approximation.

Energy dependence  of positron dechanneling -Platelets
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•Transition probability

• Dechanneling probability
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Transition probability decreases with increase in energy and saturates at higher

energies.

 Transition probability in platelet is less as compared to stacking fault case.



Initially well channeled  configuration   
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Dechanneling probability is independent of energy in case on classical regime.

At high energies platelet behave as stacking fault.



 The standard critical angle Ψ (E-1/2) relation is not strictly valid for light relativistic

particles (positrons).

 The area under the curve of total channeling probability for anharmonic case

resembles with harmonic case for increasing energy.

 Total channeling and dechanneling probability are not independent of energy in the

presence of stacking fault.

 Dechanneling probability follows similar trend in both anharmonic and harmonic

cases.

 Saturation of energy dependence of dechanneling probability occurs for lower

energies in anharmonic approximation.

 Dechanneling probability due to platelets is also independent of energy in classical

regime as known for simple stacking faults.

Conclusions



India
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Equation of motion of a crystalline undulator

Where a is the amplitude of bending of the channel and

The dislocation affected region,

0
I

II

II

I

IV

z

x

l2

0

0

0
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Region I

The Schrödinger Equation for planar channeling

Region II

Centrifugal force proportional to 2/0
2 is responsible for the curved

regions of the channel.

2=l(l+1) with l as the orbital angular momentum quantum number and

0 is the radius of curvature of the channel.
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Assume a finite number of undulator periods in a length of the

dislocation affected region of the channel (low or medium dislocation

concentration). If d is the wavelength of the dislocation affected region

and xd is the corresponding amplitude of the waves

The equation of motion of both the waves

Superposition of the two waves gives

Where A and  are the effective amplitude and phase of the final wave.
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The Schrödinger Equation

With the channel periodically bent, the radius of curvature of the dislocated

affected region,
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The variation of parameters of the dislocation affected region with dislocation

density,

Range of various parameters of the periodically bent channel affected with

dislocation corresponding to a dislocation density of 108/cm2,
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The effective potential
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The frequency of oscillation in the region,

With the effective wavefunction 
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Region III

The effective potential

The frequency of oscillation in the region,
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The wavefunction in region III

Region IV

The reflection and transmission coeffcients



When d < u
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Range of various parameters of the periodically bent channel

affected with dislocation at u= 2 d

Equation of motion,
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The maximum amplitude of oscillation

And the equilibrium axis shifts to,

The period of oscillation of the particle in the channel,


