Channeling and Channeling radiation from Imperfect crystals with Dislocations, Stacking Faults and Anharmonic interactions

A.P. Pathak ${ }^{\text {a }}$,S.V. S. Nageswara Rao ${ }^{\text {a }}$ and V.S. Vendamani ${ }^{\text {a,b }}$
${ }^{a}$ School of of Physics, University of Hyderabad, Hyderabad, 500046 India. ${ }^{b}$ Department of Physics, Pondicherry University, Puducherry 605014, India.

Ion Channeling

$>$ Scattering process
$>$ Influence of crystal lattice on the trajectory of ions

* Defects in crystals

Applications

* Structural and crystalline order
* Location of impurity atoms

Ion Channeling

0000000000000
\oplus
000
0
o
o
o

o

o

,

(c)
(b)

Fig. 8.1 Model of lattice atoms showing the atomic conforation in the dianond-iype lattice viewed along (a) random (b) planar. or (c) axial directions.

(b)

Backscattering spectrum

RBS channeling and defects

Positron planar channeling angular scans in quantum mechanical

framework

- Scattering yield vs Incident angle (or occupation probability)
- Crystal structure, lattice location of host and impurity atoms, lattice strains and defects

Before entering the crystal $\quad \Phi(x)=A \exp (i k x \sin \theta)$
Inter-atomic potential for planar channeled positron

$$
V(x) \approx V_{0}+\frac{1}{2} K x^{2}
$$

After entering into the crystal, if it is channeled

$$
\psi_{n}=\left(\frac{\alpha}{\sqrt{\pi 2^{n} n!}}\right)^{1 / 2} \exp \left(\frac{-\alpha^{2} x^{2}}{2}\right) \boldsymbol{H}_{n}(\alpha x)
$$

where coupling constant $\alpha=\sqrt{\frac{(\gamma m) \omega}{\hbar}}$

- Equating the potential energy to the max. possible K.E

$$
\left(n_{\max }+\frac{1}{2}\right) \hbar \omega=\frac{1}{2} k_{1} x_{\max }^{2}
$$

Occupation probability of any energy level (n)

$$
\pi_{n}=\left|\int_{\frac{-d_{p}}{2}}^{\frac{+d_{p}}{2}} \Phi(x) \psi_{n}(x) d x\right|^{2}
$$

Therefore

$$
\begin{gathered}
\pi_{n}^{+}=\frac{1}{M 2^{n-1} n!} \exp \left\{\frac{-(k \sin \theta)^{2}}{\alpha^{2}}\right\}\left|H_{n}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2} \\
\quad \text { where } M=\sum_{n=0}^{n_{\text {max }}} \frac{1}{n!2^{n-1}}\left|H_{n}(0)\right|^{2}
\end{gathered}
$$

$\circ M$ can be calculated by using the boundary condition

15 MeV positrons channeled along \{111\} planes of single crystal aluminum ($n_{\text {max }}=$ 3)

Dechanneling probability

$$
\chi_{n}=1-P_{n}
$$

Total occupation probability

$$
P_{n}=\sum_{n=0}^{n_{\text {max }}} \mid<n \|^{2}
$$

Energy dependence

$>$ Channeling angular scan and its FWHM determine the channeling critical angle Ψ

$$
\Psi \propto E^{-1 / 2}\{\text { in classical region })
$$

? To verify $E^{-1 / 2}$ relation--- applicability for the channeling of light relativistic particles (in quantum region)

Lower energy regime (ground st.)

- Easy to understand the energy dependenĕ̀e
- 5 MeV positron channeled along
\{111\} plane of Al

Ref: J.U. Andresen, et al

Occupation probability

$$
\begin{aligned}
\pi_{0}^{+}= & \frac{A^{2} \sqrt{\pi}}{\alpha 2^{0-1} 0!} \exp \left\{\frac{-(k \sin \theta)^{2}}{\alpha^{2}}\right\}\left|H_{0}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2} \\
& \Rightarrow \frac{2 A^{2} \sqrt{\pi}}{\alpha} \exp \left\{\frac{-(k \sin \theta)^{2}}{\alpha^{2}}\right\}
\end{aligned}
$$

(compare with standard Gaussian equation)

$$
w=\sqrt{2}\left(\frac{\alpha}{k}\right)
$$

where w is width of the Gaussian curve
Non- relativistic case: $\quad \alpha=\sqrt{\frac{(m) \omega}{\hbar}}$

$$
\gamma=1 \quad w \propto E^{-1 / 2}
$$

\checkmark Critical angle decreases with increase with incident energy

Relativistic case:

$$
\gamma=1+\frac{E}{E_{\mathrm{o}}}
$$

$$
w=P_{1} E^{-1 / 2}+P_{2} E^{-3 / 2}+\ldots \ldots .
$$

\checkmark Decreases with increase in energy E----but not just as $E^{-1 / 2}$

\checkmark The standard $E^{-1 / 2}$ relation is not strictly applicable for relativistic positrons

High energy regime (including all States)

> Channeling angular scan is superposition of all available states

\checkmark Fitting exactly as $E^{-1 / 2}$ when it enters into classical region
\checkmark It is not fitting exactly as $E^{-1 / 2}$

Anharmonic effects on positron channeling angular scans

Inter-atomic potential for planar channeled positron

$$
V(x) \approx V_{0}+\frac{1}{2} k x^{2}+\frac{1}{4} k_{1} x^{4}
$$

- Maximum number of states increase

Anharmonic oscillator wave function

$$
\begin{aligned}
& \psi_{N}(x)=\psi_{n}(x)+K C_{1}^{n} \psi_{n-2}(x)-K C_{2}^{n} \psi_{n+2}(x)+K C_{3}^{n} \psi_{n-4}(x)-K C_{4}^{n} \psi_{n+4}(x) \\
& C_{1}^{n}=(2 n-1) \sqrt{n(n-1)} \\
& C_{2}^{n}=(2 n+3) \sqrt{(n+1)(n+2)} \\
& C_{3}^{n}=\frac{1}{4} \sqrt{n(n-1)(n-2)(n-3)} \\
& C_{4}^{n}=\frac{1}{4} \sqrt{(n+1)(n+2)(n+3)(n+4)} \\
& K=\frac{\lambda}{4 \hbar \omega \alpha^{4}} \text { momentum of the incident particle }
\end{aligned}
$$

Occupation probability of any energy level (N)

$$
\pi_{N}^{+}=\int_{-\infty}^{+\infty} \Phi(x) \psi_{N}(x) d x
$$

Therefore

$$
\begin{aligned}
\pi_{N}^{+}= & \frac{1}{T 2^{n-1} n!} \exp \left(\frac{-(k \sin \theta)^{2}}{\alpha^{2}}\right)\left\{\left|H_{n}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2}+\frac{4 K^{2}(2 n-1)^{2}}{(n-2)(n+1)}\right. \\
& \left|H_{n-2}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2}-\frac{K^{2}(2 n+3)^{2}}{4}\left|H_{n+2}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2}+\frac{K^{2}}{(n-4)(n+1)} \\
& \left.\left|H_{n-4}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2}-\frac{K^{2}}{256}\left|H_{n+4}\left(\frac{k \sin \theta}{\alpha}\right)\right|^{2}\right\}
\end{aligned}
$$

15 MeV positrons channeled along $\{111\}$ planes of single $\underline{\left.\text { crystal aluminum (} n_{m a x}=\mathcal{Z}\right)}$

* The area under the curve of tot.ch.prob. for anharmonic case resembles with harmonic case, with increase in energy

Total occupation probability

$$
P_{N}=\sum_{N=0}^{n_{\text {max }}} \mid<N \|^{2}
$$

Types of defects

\square Zero dimension - vacancy, substitutional, interstitial
\square One dimension - dislocation, slip
\square Two dimension- stacking fault, twins, Grain boundary
-Three dimension - voids

The Model

(b)

FIG. 3. (a) Typical channel at some finite diatanee from a dislocation. (b) Straight model channel replacing the chamel of part (a) and showing the ooordinates used in the text. Here, l is the half-width of the chanmel. $x_{\text {w }}$ is the amplitude in the first part of the channel, x_{0} is the equilibrium position about which the particle will oscillate, and x_{1} and x_{2} are the positions at which the particle arrives after having traverged the first and aecond parts of the channel, respectively.

Region I

The Schrödinger Equation for planar channeling

$-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Psi^{I}(x, z)+\frac{1}{2} m \omega^{2} x^{2} \Psi^{I}(x, z)=E^{I} \Psi^{I}(x, z) \quad E^{I}=(n+1 / 2) \hbar \omega+\frac{\hbar^{2} k^{2}}{2 m}$
Equations for the transverse and longitudinal motion,

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} X^{I^{\prime \prime}}(x)+\frac{1}{2} m \omega^{2} x^{2} X^{I}(x)=E_{T}^{I} X^{I}(x) \\
-\frac{\hbar^{2}}{2 m} Z^{I^{\prime \prime}}(z)=E_{L}^{I} Z^{I}(z)
\end{gathered}
$$

solutions

$$
\begin{aligned}
X_{n}^{I}(x) & =\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(2^{n} n!\right)^{-1 / 2} H_{n}(a x) e^{-a^{2} x^{2} / 2} \\
Z^{I}(z)=A e^{i k z}+B e^{-i k z} & \text { where }
\end{aligned} \quad a=(m \omega / \hbar)^{1 / 2}
$$

If x_{0} is the initial amplitude of the channelon

$$
\Psi^{I}(x, z)=X^{I}\left(x-x_{0}\right) Z^{I}(z)
$$

After including the effects of several transverse states

$$
\Psi^{I}(x, z)=A_{0} X_{0}^{I} e^{i k_{0} z}+\sum_{n=0} B_{n} X_{n}^{I} e^{-i k_{n} z}
$$

Region II

The Schrödinger Equation

$$
-\frac{\hbar^{2}}{2 m} \nabla_{\rho, \varphi}^{2} \Psi^{I I}(\rho, \varphi)+V(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

The transverse potential due to the curved atomic planes is also assumed as harmonic around the central region

$$
\begin{gathered}
V(\rho)=\frac{1}{2} m \omega^{2}\left(\rho-\rho_{0}\right)^{2} \\
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)+\frac{1}{2} m \omega^{2}\left(\rho-\rho_{0}\right)^{2} \Psi^{I I}(\rho, \varphi)=E^{I} \Psi^{I I}(\rho, \varphi)
\end{gathered}
$$

Separation of variables gives the azimuthal equation

$$
F^{\prime \prime \prime}(\varphi)=-\mu^{2} F^{I I}(\varphi)
$$

with solution

$$
F^{I I}(\varphi)=C e^{i \mu \varphi}+D e^{-i \mu \varphi}
$$

and radial equation. $\quad R^{I \prime \prime}(\rho)+\frac{2 m}{\hbar^{2}}\left[E^{I I}-\frac{1}{2} m \omega^{2}\left(\rho-\rho_{0}\right)^{2}-\frac{\hbar^{2} \mu^{2}}{2 m \rho^{2}}\right] R^{I I}(\rho)=0$

Effective potential

$$
V_{e f f}(\xi) \approx \frac{\hbar^{2}}{2 m}\left[\left(\lambda / \rho_{0}^{4}\right)\left(\xi-a_{p}\right)^{2}+u_{\min }\right]
$$

with

$$
\begin{gathered}
\xi=\rho-\rho_{0} \\
\lambda=a^{4} \rho_{0}^{4}+3 \mu^{2} \\
a_{p}=\mu^{2} \rho_{0} / \lambda \\
u_{\min }=\frac{\mu^{2}\left(\lambda-\mu^{2}\right)}{\rho_{0}^{2} \lambda}=\left(2 m / \hbar^{2}\right) V_{\min }
\end{gathered}
$$

The frequency in the second region

$$
\omega^{\prime}=(\hbar / m)\left(\lambda / \rho_{0}^{4}\right)^{1 / 2}
$$

After including the effects of several transverse states

$$
\Psi^{I I}(x, z)=\sum_{m=0} R_{m}^{I I}\left[C_{m} e^{i \mu \varphi}+D_{m} e^{-i \mu \varphi}\right]
$$

Region III

The Schrödinger Equation
$-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I I}(\rho, \varphi)+\frac{1}{2} m \omega^{2}\left(\rho-\rho_{0}\right)^{2} \Psi^{I I I}(\rho, \varphi)=E^{I I I} \Psi^{I I I}(\rho, \varphi)$
Separation of variables gives the azimuthal eqn.

$$
F^{I I I \prime}(\varphi)=-\mu^{2} F^{I I I}(\varphi)
$$

with solution

$$
F^{I I I}(\varphi)=G e^{i \mu \varphi}+H e^{-i \mu \varphi}
$$

and radial eqn.

$$
R^{I I \prime \prime}(\rho)+\frac{2 m}{\hbar^{2}}\left[E^{I I}-\frac{1}{2} m \omega^{2}\left(\rho-\rho_{0}\right)^{2}+\frac{\hbar^{2} \mu^{2}}{2 m \rho^{2}}\right] R^{I I I}(\rho) \cong 0
$$

Effective potential

$$
\begin{aligned}
& V_{e f f}^{\prime}(\xi) \approx \frac{\hbar^{2}}{2 m}\left[\left(\lambda^{\prime} / \rho_{0}^{4}\right)\left(\xi+a_{p}^{\prime}\right)^{2}+u_{\min }^{\prime}\right] \\
& \text { with } \\
& \qquad \lambda^{\prime}=a^{4} \rho_{0}^{4}-3 \mu^{2} \\
& a_{p}^{\prime}=\mu^{2} \rho_{0} / \lambda^{\prime} \\
& u_{\min }^{\prime}=-\frac{\mu^{2}\left(\lambda^{\prime}+\mu^{2}\right)}{\rho_{0}^{2} \lambda^{\prime}}=-\left(2 m / \hbar^{2}\right) V_{\min }^{\prime}
\end{aligned}
$$

The frequency in the second region

$$
\omega^{\prime \prime}=(\hbar / m)\left(\lambda^{\prime} / \rho_{0}^{4}\right)^{1 / 2}
$$

After including the effects of several transverse states

$$
\Psi^{I I I}(x, z)=\sum_{m=0} R_{m}^{I I I}\left[G_{m} e^{i \mu \varphi}+H_{m} e^{-i \mu \varphi}\right]
$$

Region IV

Region 4 is a perfect channel, wavefunction of positron in this region is of the same form as in the $1^{\text {st }}$ region

$$
\Psi^{I V}(x, z)=X_{n}^{I V} I_{n} e^{i k_{n} z}
$$

Boundary Conditions

Boundary I

$$
\begin{aligned}
\left.\Psi^{I}\right|_{z=0} & =\left.\Psi^{I I}\right|_{\varphi=0} \\
\left.\frac{\partial \Psi^{I}}{\partial z}\right|_{z=0} & =\left.\frac{1}{\rho_{0}} \frac{\partial \Psi^{I I}}{\partial \varphi}\right|_{\varphi=0}
\end{aligned}
$$

$$
\begin{array}{r}
A X^{I}+B X^{I}=R^{I I}[C+D] \\
i k A X^{I}-i k B X^{I}=\frac{i \mu}{\rho_{0}} R^{I}[C-D]
\end{array}
$$

Boundary II

$$
\begin{array}{ll}
\left.\Psi^{I I}\right|_{\varphi=\varphi_{0}}=\left.\Psi^{I I I}\right|_{\varphi=0} & R^{I I}\left[C e^{i \mu \varphi}+D e^{-i \mu \varphi}\right]=R^{I I}[G+H] \\
\left.\frac{\partial \Psi^{I I}}{\partial \varphi}\right|_{\varphi=\varphi_{0}}=\left.\frac{\partial \Psi^{I I I}}{\partial \varphi}\right|_{\varphi=0} & R^{I I}\left[C e^{i \mu \varphi}-D e^{-i \mu \varphi}\right]=R^{I I}[G-H]
\end{array}
$$

Boundary III

$$
\begin{aligned}
\left.\Psi^{I I I}\right|_{\varphi=\varphi_{0}} & =\left.\Psi^{I V}\right|_{z=t} & R^{I I I}\left[G e^{i \mu \varphi}+H e^{-i \mu \varphi}\right]=I X^{I V} e^{i k t} \\
\left.\frac{1}{\rho_{0}} \frac{\partial \Psi^{I I I}}{\partial \varphi}\right|_{\varphi=\varphi_{0}} & =\left.\frac{\partial \Psi^{I V}}{\partial z}\right|_{z=t} & \frac{i \mu}{\rho_{0}} R^{I I I}\left[G e^{i \mu \varphi}+H e^{-i \mu \varphi}\right]=i k I X^{I V} e^{i k t}
\end{aligned}
$$

The Reflection and Transmission co-efficient in terms of the various parameters of the dislocation affected channel

$$
\begin{aligned}
& |r|^{2}=\frac{|B|^{2}}{|A|^{2}}=\frac{\left(-\mu^{2}+k^{2} \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}{4 k^{2} \mu^{2} \rho_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+k^{2} \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)} \\
& |T|^{2}=1-|r|^{2}=\frac{4 k^{2} \rho_{0}^{2} \mu^{2}}{4 k^{2} \mu^{2} \rho_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+k^{2} \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}
\end{aligned}
$$

Effects of dislocation and anharmonic interaction on channeling radiation

Region I

The periodic potential of a positron including the anharmonic term is

$$
\begin{array}{r}
V(x)=V_{0} x^{2}+V_{1} x^{4} \\
\text { where } \quad V_{0}=\frac{4 \pi Z_{1} Z_{2} e^{2} C a^{2} N_{p}}{(l+a)^{3}} \\
V_{1}=\frac{4 \pi Z_{1} Z_{2} e^{2} C a^{2} N_{p}}{(l+a)^{5}}
\end{array}
$$

In the region I the total transverse energy can be written as

$$
E_{T}^{I}=\left(n+\frac{1}{2}\right) \hbar \omega+\frac{3}{4} V_{1} \alpha^{4}\left(2 n^{2}+2 n+1\right)
$$

The wavefunction in this region is given by

$$
\Psi^{I}(x, z)=A_{0} X_{0}^{I} e^{i k_{0} z}+\sum_{n=0} B_{n} X_{n}^{I} e^{-i k_{n} z}
$$

Region II

The Schrodinger equation for the region,

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)+U(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

where

$$
U(\rho)=V_{0}\left(\rho-\rho_{0}\right)^{2}+V_{1}\left(\rho-\rho_{0}\right)^{4}
$$

Separating variables, the azimuthal and radial equations,

$$
\begin{gathered}
F^{\prime \prime I I}(\varphi)=-\mu^{2} F^{I I}(\varphi) \\
R^{\prime \prime I I}(\rho)+\frac{2 m}{\hbar^{2}}\left[E^{I I}-V_{0}\left(\rho-\rho_{0}\right)^{2}-V_{1}\left(\rho-\rho_{0}\right)^{4}-\frac{\hbar^{2}}{2 m} \frac{\mu^{2}}{\rho^{2}}\right] R^{I I}(\rho)=0
\end{gathered}
$$

The effective potential after including the centrifugal term is given by,

$$
V_{e f f}=V_{0}\left(\rho-\rho_{0}\right)^{2}+V_{1}\left(\rho-\rho_{0}\right)^{4}+\frac{\hbar^{2}}{2 m} \frac{\mu^{2}}{\rho^{2}}
$$

The effective potential,

$$
V_{e f f}(\xi)=\frac{\hbar^{2}}{2 m}\left\{\frac{\lambda_{1}}{\rho_{0}^{4}}\left(\xi-a_{p_{1}}\right)^{2}+\frac{\lambda_{1}^{\prime}}{\rho_{0}^{6}}\left(\xi-a_{p_{1}}^{\prime}\right)^{4}-\frac{6 \mu^{2} \rho_{0}^{2}}{\lambda_{1}^{\prime 2}}\left(\xi-\frac{a_{p_{1}}^{\prime}}{3}\right)^{2}+U_{\min }\right\}
$$

Where

$$
\begin{gathered}
\lambda_{1}=a^{4} \rho_{0}^{4}+3 \mu^{2} \\
a_{p_{1}}=\frac{\mu^{2} \rho_{0}}{\lambda_{1}} \\
\lambda_{1}^{\prime}=\frac{2 m V_{1} \rho_{0}^{6}}{\hbar^{2}}+5 \mu^{2} \\
a_{p_{1}}^{\prime}=\frac{\mu^{2} \rho_{0}}{\lambda_{1}^{\prime}} \\
U_{\min }=\frac{\mu^{2} \rho_{0}^{4}}{\lambda_{1}^{\prime 4}}\left[\frac{\left(\lambda_{1}-\mu^{2}\right) \lambda_{1}^{3}}{\lambda_{1}}-\frac{\mu^{6}}{3}\right]
\end{gathered}
$$

and wavefunction in this region

$$
\Psi^{I I}(\rho, \varphi)=\sum_{m=0} R_{m}^{I I}\left[C_{m} e^{i \mu \varphi}+D_{m} e^{-i \mu \varphi}\right]
$$

Region III

The effective potential

$$
V_{e f f}=V_{0}\left(\rho-\rho_{0}\right)^{2}+V_{1}\left(\rho-\rho_{0}\right)^{4}-\frac{\hbar^{2}}{2 m} \frac{\mu^{2}}{\rho^{2}}
$$

After simplification,

$$
V_{e f f}(\xi)=\frac{\hbar^{2}}{2 m}\left\{\frac{\lambda_{2}}{\rho_{0}^{4}}\left(\xi+a_{p_{2}}\right)^{2}+\frac{\lambda_{2}^{\prime}}{\rho_{0}^{6}}\left(\xi+a_{p_{2}}^{\prime}\right)^{4}-\frac{6 \mu^{2} \rho_{0}^{2}}{\lambda_{2}^{\prime 2}}\left(\xi+\frac{a_{p_{2}}^{\prime}}{3}\right)^{2}-U_{\min }^{\prime}\right\}
$$

where

$$
\begin{gathered}
\lambda_{2}=a^{4} \rho_{0}^{4}-3 \mu^{2} \\
a_{p_{2}}=\frac{\mu^{2} \rho_{0}}{\lambda_{2}} \\
\lambda_{2}^{\prime}=\frac{2 m V_{1} \rho_{0}^{6}}{\hbar^{2}}-5 \mu^{2} \\
a_{p_{2}}^{\prime}=\frac{\mu^{2} \rho_{0}}{\lambda_{2}^{\prime}} \\
U_{\text {min }}^{\prime}=\frac{\mu^{2} \rho_{0}^{4}}{\lambda_{2}^{4}}\left[\frac{\left(\lambda_{2}+\mu^{2}\right) \lambda_{2}^{\prime 3}}{\lambda_{2}}+\frac{5 \mu^{6}}{3}\right]
\end{gathered}
$$

Wavefunction in region III

$$
\Psi^{I I I}(\rho, \varphi)=\sum_{m=0} R_{m}^{I I I}\left[G_{m} e^{i \mu \varphi}+H_{m} e^{-i \mu \varphi}\right]
$$

Region IV

Wavefunction in the region (straight channel) where there are only transmitted waves

$$
\Psi^{I V}(x, z)=X_{n}^{I V} I_{n} e^{i k_{n} z}
$$

The Schrödinger Equation for electron planar channeling

Region I

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Psi^{I}(x, z)+U(x) \Psi^{I}(x, z)=E^{I} \quad \Psi^{I}(x, z) \quad E^{I}=\frac{m V_{0}^{2}}{2 \hbar^{2} n^{2}}+\frac{\hbar^{2} k^{2}}{2 m} \\
U(x)=-\frac{V_{0}}{x+a_{T}} \quad V_{0}=2 Z_{1} Z_{2} e^{2} N d_{p} C a^{2}
\end{gathered}
$$

Equations for the transverse and longitudinal motion,

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} X^{I^{\prime \prime}}(x)+\frac{V_{0}}{x+a_{T}} X^{I}(x)=E_{T}^{I} X^{I}(x) \\
-\frac{\hbar^{2}}{2 m} Z^{I^{\prime \prime}}(z)=E_{L}^{I} Z^{I}(z)
\end{gathered}
$$

If x_{0} is the initial amplitude of the channelon

$$
\Psi^{I}(x, z)=X^{I}\left(x-x_{0}\right) Z^{I}(z)
$$

After including the effects of several transverse states, we can write

$$
\Psi^{I}(x, z)=A_{0} X_{0}^{I} e^{i k_{0} z}+\sum_{n=0} B_{n} X_{n}^{I} e^{-i k_{n} z}
$$

Region II

The Schrödinger Equation

$$
-\frac{\hbar^{2}}{2 m} \nabla_{\rho, \varphi}^{2} \Psi^{I I}(\rho, \varphi)+V(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

The transverse potential due to the curved atomic planes is assumed to shift with respect to lattice plane, due to curvature;

$$
V(\rho)=-\frac{V_{0}}{\left(\rho-\rho_{0}\right)+a_{T}}
$$

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)-\frac{V_{0}}{\left(\rho-\rho_{0}\right)+a_{T}} \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

Separation of variables gives the azimuthal equation

$$
\begin{gathered}
F^{I \prime \prime}(\varphi)=-\mu^{2} F^{I I}(\varphi) \\
F^{I I}(\varphi)=C e^{i \mu \varphi}+D e^{-i \mu \varphi}
\end{gathered}
$$

with solution
and radial equation

$$
R^{I I \prime}(\rho)+\frac{2 m}{\hbar^{2}}\left[E^{I I}+\frac{V_{0}}{\left(\rho-\rho_{0}\right)+a_{T}}-\frac{\hbar^{2} \mu^{2}}{2 m \rho^{2}}\right] R^{I I}(\rho)=0
$$

Effective potential for electron case

$$
\begin{aligned}
& V_{e f f}(\xi)=\frac{\hbar}{2 m}\left\{\frac{\lambda_{1}^{\prime 3}}{\lambda_{1}^{2} \rho_{0}^{4} a_{T F}^{3}\left[2 \xi+\frac{\lambda_{1}^{\prime}}{\lambda_{1}}\right]}-\frac{\lambda_{1}^{\prime 2}}{\lambda_{1} \rho_{0}^{4} a_{T F}^{3}}+\frac{\lambda_{1}^{\prime \prime}}{\rho_{0}^{4} a_{T F}^{3}}\right\} \\
& \lambda_{1}=-2 a^{4} \rho_{0}^{4}+3 \mu^{2} a_{T F}^{3}
\end{aligned}
$$

After including the effects of several transverse states

$$
\Psi^{I I}(x, z)=\sum_{m=0} R_{m}^{I I}\left[C_{m} e^{i \mu \varphi}+D_{m} e^{-i \mu \varphi}\right]
$$

Region III

Effective potential is given by

$$
\lambda_{2}=-2 a^{4} \rho_{0}^{4}-3 \mu^{2} a_{T F}^{3}
$$

$$
V_{e f f}(\xi)=\frac{\hbar}{2 m}\left\{\frac{\lambda_{2}^{\prime 3}}{\lambda_{2}^{2} \rho_{0}^{4} a_{T F}^{3}\left[2 \xi+\frac{\lambda_{2}^{\prime}}{\lambda_{2}}\right]}-\frac{\lambda_{2}^{\prime 2}}{\lambda_{2} \rho_{0}^{4} a_{T F}^{3}}+\frac{\lambda_{2}^{\prime \prime}}{\rho_{0}^{4} a_{T F}^{3}}\right\} \begin{aligned}
& \lambda_{2}^{\prime}=-a^{4} \rho_{0}^{4} a_{T F}-\mu^{2} a_{T F}^{3} \rho_{0} \\
& \lambda_{2}^{\prime \prime}=-2 a^{4} \rho_{0}^{4} a_{T F}^{2}-\mu^{2} a_{T F}^{3} \rho_{0}^{2}
\end{aligned}
$$

After including the effects of several transverse states

$$
\Psi^{I I I}(x, z)=\sum_{m=0} R_{m}^{I I I}\left[G_{m} e^{i \mu \varphi}+H_{m} e^{-i \mu \varphi}\right]
$$

Region IV

Region 4 is a perfect channel, wavefunction of electron in this region is of the same form as in the $1^{\text {st }}$ region

$$
\Psi^{I V}(x, z)=X_{n}^{I V} I_{n} e^{i k_{n} z}
$$

The Reflection and Transmission co-efficients in terms of the various parameters of the dislocation affected channel

$$
\begin{gathered}
|R|^{2}=\frac{|B|^{2}}{|A|^{2}}=\frac{\left(-\mu^{2}+2 m E \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}{8 m E \mu^{2} \rho_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+2 m E \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)} \\
|T|^{2}=1-|R|^{2}=\frac{8 m E \rho_{0}^{2} \mu^{2}}{8 m E \mu^{2} \rho_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+2 m E \rho_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}
\end{gathered}
$$

\Rightarrow For a relativistic particle, the emission process is considered in the rest frame of the particle moving through the crystal.
\Rightarrow Since the crystal is rushing back at a speed $-v$, it appears Lorentzcontracted
$d^{R}=\frac{d}{\gamma}$

$$
E_{\perp}^{R}=\gamma E_{\perp}
$$

$$
V^{R}=\gamma \mathrm{V}
$$

The frequency in the rest frame

$\omega^{R}=\gamma \omega_{0}$
The emission in the rest frame is observed in the lab frame

$$
\omega^{L}=\frac{\omega_{0}}{1-\beta \cos \theta}
$$

The maximum frequency is in the forward direction,
i.e., at $\theta=0(\beta=1)$

$$
\omega_{m}=2 \gamma^{2} \omega_{0}
$$

Crystalline Undulator

A crystalline Undulator consist of
\Rightarrow A channel which is periodically bent
\Rightarrow Channeling of ultra relativistic positively charged particles
Channeling takes place if the maximum centrifugal force due to the bending is less than the maximal force due to the interplanar field.

We consider a crystal whose planes are periodically bent following a perfect harmonic shape

$$
x(z)=a \sin \left(k_{u} z\right)
$$

The transverse and longitudinal coordinates of a channeled particle in such a periodically bent crystal

$$
\tilde{x}=x-a \sin \left(k_{u} z\right)
$$

Where a is the amplitude of bending of the channel and

$$
k_{u}=\frac{2 \pi}{\lambda_{u}}
$$

Region I \& IV

The Schrödinger Equation for planar channeling

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta z^{2}}\right) \Psi^{I}(x, z)+U(x) \Psi^{I}(x, z)=E^{I} \Psi^{I}(x, z)
$$

Region II \& III

Centrifugal force proportional to $\mu^{2} / \rho_{0}{ }^{2}$ is responsible for the curved regions of the channel.
$\mu^{2}=l(l+1)$ with l as the orbital angular momentum quantum number and ρ_{0} is the radius of curvature of the channel.

Assume that a finite number of undulator periods are there in a length of the dislocation affected region of the channel. If λ_{d} is the wavelength of the dislocation affected region and x_{d} is the corresponding $\varepsilon \lambda_{d}=n \lambda_{u}$ f the waves

$$
\begin{aligned}
& r_{1}=a \sin \left(n k_{d} z\right) \\
& r_{2}=x_{d} \sin \left(k_{d} z\right)
\end{aligned}
$$

Both these waves can be written in the form

$$
r=A \sin \left(k_{d} z+\Phi\right)
$$

Addition of the waves aives

$$
A^{2}=a^{2}+x_{d}^{2}+2 a x_{d} \cos \left[(n-1) k_{d} z-\phi\right]
$$

$\tan \Phi=\frac{a \sin \left[(n-1) k_{d} z\right]+x_{d} \sin \phi}{a \cos \left[(n-1) k_{d} z\right]+x_{d} \cos \phi}$
the final wave.
Amplitude is no longer constant but varies periodically with respect to the depth

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)+U(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

With the channel periodically bent, the radius of curvature of the dislocated affected region,

$$
\begin{gathered}
V(\rho)=-\frac{V_{0}}{\left(\rho-\tilde{\rho}_{0}\right)+a_{T}} \\
\tilde{\rho}_{0}=\rho_{0}-x_{d} \sin \left(k_{d} z\right)+A \sin \left(k_{u} z\right)
\end{gathered}
$$

Larger the value of a, larger is the variation of $\tilde{\rho}_{0}$ with z.

Assume a finite number of undulator periods in a length of the dislocation affected region of the channel (low or medium dislocation concentration). If λ_{d} is the wavelength of the dislocation affected region and x_{d} is the corresponding amplitude of the waves

$$
\lambda_{d}=n \lambda_{u}
$$

The equation of motion of both the waves

$$
\begin{aligned}
& r_{1}=a \sin \left(n k_{d} z\right) \\
& r_{2}=x_{d} \sin \left(k_{d} z\right)
\end{aligned}
$$

Superposition of the two waves gives

$$
r=A \sin \left(k_{d} z+\varepsilon\right)
$$

Where A and ε are the effective amplitude and phase of the final wave.

$$
\begin{aligned}
A^{2} & =a^{2}+x_{d}^{2}+2 a x_{d} \cos \left[(n-1) k_{d} z-\phi\right] \\
\tan \varepsilon & =\frac{a \sin \left[(n-1) k_{d} z\right]+x_{d} \sin \phi}{a \cos \left[(n-1) k_{d} z\right]+x_{d} \cos \phi}
\end{aligned}
$$

$z(n m)$

The Schrödinger Equation

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)+U(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

With the channel periodically bent, the radius of curvature of the dislocated affected region,

$$
\tilde{\rho}_{0}=\rho_{0}-x_{d} \sin \left(k_{d} z\right)+A \sin \left(k_{u} z\right)
$$

The variation of parameters of the dislocation affected region with dislocation density,

Dislocation density	r_{0}	Radius of Curvature	2 z (Length of the curved part)
$10^{10} / \mathrm{cm}^{2}$	$0.5 \times 10^{2} \mathrm{~nm}$	$10.28 \times 10^{5} \mathrm{~nm}$	$6.28 \times 10^{2} \mathrm{~nm}$
$10^{9} / \mathrm{cm}^{2}$	$1.58 \times 10^{2} \mathrm{~nm}$	$10.266 \times 10^{6} \mathrm{~nm}$	$9.92 \times 10^{2} \mathrm{~nm}$
$10^{8} / \mathrm{cm}^{2}$	$0.5 \times 10^{3} \mathrm{~nm}$	$10.28 \times 10^{7} \mathrm{~nm}$	$6.28 \times 10^{3} \mathrm{~nm}$

Range of various parameters of the periodically bent channel affected with dislocation corresponding to a dislocation density of $10^{8} / \mathrm{cm}^{2}$,

a (cm)	λ_{u} $(\mathrm{~cm})$	R_{u} $(\mathrm{~cm})$	E (Mev)	x_{d} amplitude of the dislocation wave
1×10^{-7}	3.14×10^{-4}	2.5×10^{-2}	142.363	2.198×10^{-3}
10×10^{-7}	3.14×10^{-4}	2.56×10^{-3}	14.236	2.198×10^{-4}
100×10^{-7}	3.14×10^{-4}	2.5×10^{14}	1.412	2.198×10^{15}

When $\lambda_{d}<\lambda_{u}$
Range of various parameters of the periodically bent channel affected with dislocation at $\lambda_{u}=2 \lambda_{d}$

Dislocation density	λ_{d} $(\mathrm{~cm})$	λ_{u} $(\mathrm{~cm})$	a (cm)	R_{u} $(\mathrm{~cm})$	E (MeV)
$1.5 \times 10^{9} / \mathrm{cm}^{2}$	1.66×10^{-4}	3.32×10^{-4}	1×10^{-7}	2.8×10^{-2}	150
			10×10^{-7}	2.8×10^{-3}	15
			100×10^{-7}	2.8×10^{-4}	1.5

Equation of motion,

$$
\begin{gathered}
\tilde{x}=x-a \sin \left(k_{u} v t\right) \\
\ddot{\tilde{x}}=\ddot{x}+a k_{u}^{2} v^{2} \sin \left(k_{u} v t\right) \\
\frac{1}{R}=a k_{u}^{2} \sin \left(k_{u} v t\right)
\end{gathered}
$$

$$
\ddot{\tilde{x}}+\frac{q e}{m \gamma} U(\tilde{x})-\frac{\gamma v^{2}}{R} \tilde{x}=0
$$

The maximum amplitude of oscillation

$$
\tilde{x}_{m}=\frac{m \gamma^{2} v^{2}}{q e V_{0} R}
$$

And the equilibrium axis shifts to,

$$
\tilde{x}_{0}=\frac{m \gamma^{2} v^{2}}{2 q e V_{0} R}
$$

The period of oscillation of the particle in the channel,

$$
T=\left(\frac{m \gamma}{2 q e V_{0}}\right)^{1 / 2} \operatorname{Sin}^{-1}\left\{1-\frac{2 q e V_{0} R}{m \gamma^{2} v^{2}} \cos \left(k_{u} z\right)\right\}
$$

The reflection and transmission coefficients FOR ELECTRONS case

$$
\begin{aligned}
|R|^{2} & =\frac{\left(-\mu^{2}+2 m E \tilde{\rho}_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}{8 m E \mu^{2} \tilde{\rho}_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+2 m E \widetilde{\rho}_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)} \\
|T|^{2} & =\frac{8 m E \widetilde{\rho}_{0}^{2} \mu^{2}}{8 m E \mu^{2} \tilde{\rho}_{0}^{2} \operatorname{Cos}^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+2 m E \widetilde{\rho}_{0}^{2}\right)^{2} \operatorname{Sin}^{2}\left(2 \mu \varphi_{0}\right)}
\end{aligned}
$$

Dislocations in a periodically bent crystal changes the channeling and dechanneling coefficients by the parameters of the crystalline undulator.

For low dislocation density, $\quad \lambda_{d}>\lambda_{u}$, the channelled particle SEES the effects of dislocations because several undulations of crystalline undulator are within one period of dislocation affected channel.

In the opposite case of $\lambda_{d}<\lambda_{u}$, (High dislocation density) the undulator effects are largely UNEFFECTED by dislocations, because dislocation affected regions are like point defects on the scale of undulator affected regions

Channelons in Stacking Faults

00

000
-
\oplus
000000
0000000
\oplus

$\square \rightarrow \infty ?$
(t)

Positron channeling in Stacking Faults

- Quantum model[1]
- Energy dependence[2]
[1] L. N. S. Prakash Goteti, Anand P. Pathak, J. Phys. C 9 (1997) 1709.
[2] V.S. Vendamani, S.V.S. Nageswara Rao, Nucl. Instr. Meth. Phys. Res. B 268
(2010) 2312-2317.

Effects of stacking fault on positron planar channeling - energy

dependence (Harmonic potential)

Dechanneling probability varies as (in classical region)

- point defects $E^{-1 / 2}$
- dislocations E
- stacking fault E^{0} (independent of incident energy)
? To verify whether this relation is applicable for light relativistic particles (in quantum region)

Channeling on stacking faults

- Mismatched stacking sequence

$$
\begin{gathered}
\psi_{i}=\psi_{L}=\left(\frac{\alpha}{\sqrt{\pi 2^{n} n!}}\right)^{1 / 2} \exp \left(\frac{-\alpha^{2} x^{2}}{2}\right) H_{n}(\alpha x) \\
\psi_{f}=\psi_{R}=\left(\frac{\alpha^{\prime}}{\sqrt{\pi 2^{m} m!}}\right)^{1 / 2} \exp \left(\frac{-\alpha^{1^{2}}\left(x+a_{s}\right)^{2}}{2}\right) H_{m}\left(\alpha^{\prime} x+\alpha^{\prime} a_{s}\right) \\
\psi_{i}(x)=\mid n>\text { and } \psi_{f}(x)=\mid m> \\
<n \left\lvert\, m>=\frac{\exp \left(\frac{-b^{2}}{4}\right)}{\sqrt{2^{m+n} m!n!}}\left(\sum_{r=\max (0, m-n)}^{m}(-1)^{n-m+r} 2^{m-r} m_{c_{r}} \frac{n!}{(n-m+r)!}(b)^{n-m+2 r}\right)\right.
\end{gathered}
$$

Channeling probability $\quad P_{n}=\sum_{m=0}^{n_{\text {max }}}|<n| m>\left.\right|^{2}$,
Dechanneling probability

$$
\chi_{n}=1-P_{n}
$$

Energy dependence

$>$ Characterize the nature of defects present in crystals
$>$ Well channeled configuration (all particles are in grd. St.)

$$
<0 / m>=\left|\exp \left(\frac{-b^{2}}{4}\right)\right|_{i=0}^{2 n_{\text {max }}}\left|\frac{b^{i}}{\sqrt{2^{i} i!}}\right|^{2}=f(b) . g(b)
$$

where $f(b)=\left|\exp \left(\frac{-b^{2}}{4}\right)\right|^{2}$ and $g(b)=\sum_{i=0}^{n_{\text {max }}}\left|\frac{b^{i}}{\sqrt{2^{i} i!}}\right|^{2}, \quad$ where $b=\alpha . a_{s}$

\checkmark Decrease with increase in energy

\checkmark Increase with increase in energy

Channeling and dechanneling probabilities for ground state

Total channeling and dechanneling probabilities

\checkmark Total channeling probability decreases with increase in energy.
\checkmark Decreasing for increasing staking shift.

Effects of stacking fault on positron planar channeling - energy dependence (Anharmonic potential)

- Matrix element across the stacking faults

$$
\begin{aligned}
\left\langle m^{(0)} \mid n^{(0)}\right\rangle= & \left.\left.\left.\left.\left\langle m^{(0)} \mid n^{(0)}\right\rangle+k C_{1}^{n}\left|m^{(0)}\right| n-2^{(0)}\right\rangle-k C_{2}^{n}\left|m^{(0)}\right| n+2^{(0)}\right\rangle+k C_{3}^{n}\left|m^{(0)}\right| n-4^{(0)}\right\rangle-k C_{4}^{n}\left|m^{(0)}\right| n+4^{(0)}\right\rangle \\
& \left.\left.\left.\left.+k C_{1}^{m}\left|m-2^{(0)}\right| n^{(0)}\right\rangle+k^{2} C_{1}^{m} C_{1}^{n}\left|m-2^{(0)}\right| n-2^{(0)}\right\rangle-k^{2} C_{1}^{m} C_{2}^{n}\left|m-2^{(0)}\right| n+2^{(0)}\right\rangle+k^{2} C_{1}^{m} C_{3}^{n}\left|m-2^{(0)}\right| n-4^{(0)}\right\rangle \\
& \left.\left.\left.\left.-k^{2} C_{2}^{m} C_{1}^{n}\left|m+2^{(0)}\right| n-2^{(0)}\right\rangle+k^{2} C_{2}^{m} C_{2}^{n}\left|m+2^{(0)}\right| n+2^{(0)}\right\rangle-k^{2} C_{2}^{m} C_{3}^{n}\left|m+2^{(0)}\right| n-4^{(0)}\right\rangle+k^{2} C_{2}^{m} C_{4}^{n}\left|m+2^{(0)}\right| n+4^{(0)}\right\rangle \\
& \left.\left.\left.\left.+k C_{3}^{m}\left|m-4^{(0)}\right| n^{(0)}\right\rangle+k^{2} C_{3}^{m} C_{1}^{n}\left|m-4^{(0)}\right| n-2^{(0)}\right\rangle-k^{2} C_{3}^{m} C_{2}^{n}\left\langle m-4^{(0)} \mid n+2^{(0)}\right\rangle+k^{2} C_{3}^{m} C_{3}^{n}\left|m-4^{(0)}\right| n-4^{(0)}\right\rangle-k^{2} C_{3}^{m} C_{4}^{n}\left|m-4^{(0)}\right| n+4^{(0)}\right\rangle \\
& \left.\left.\left.-k C_{4}^{m}\left|m+4^{(0)}\right| n^{(0)}\right\rangle-k^{2} C_{4}^{m} C_{1}^{n}\left|m+4^{(0)}\right| n-2^{(0)}\right\rangle+k^{2} C_{4}^{m} C_{2}^{n}\left\langle m+4^{(0)} \mid n+2^{(0)}\right\rangle-k^{2} C_{4}^{m} C_{3}^{n}\left\langle m+4^{(0)} \mid n-4^{(0)}\right\rangle+k^{2} C_{4}^{m} C_{4}^{n}\left|m+4^{(0)}\right| n+4^{(0)}\right\rangle
\end{aligned}
$$

Channeling probability $\quad P_{n}=\sum_{m=0}^{n_{\text {max }}}|<n| m>\left.\right|^{2}$,
Dechanneling probability

$$
\chi_{n}=1-P_{n}
$$

- Well channeled configuration

$$
\begin{aligned}
\left\langle 0^{(1)} \mid 0^{(1)}\right\rangle= & \left\langle 0^{(0)} \mid 0^{(0)}\right\rangle-3 \sqrt{2} k\left\langle 0^{(0)} \mid 2^{(0)}\right\rangle-\frac{\sqrt{6}}{2} k\left\langle 0^{(0)} \mid 4^{(0)}\right\rangle-3 \sqrt{2} k\left\langle 2^{(0)} \mid 0^{(0)}\right\rangle \\
& +18 k^{2}\left\langle 2^{(0)} \mid 0^{(0)}\right\rangle+3 \sqrt{3} k^{2}\left\langle 2^{(0)} \mid 4^{(0)}\right\rangle-\frac{\sqrt{6}}{2} k\left\langle 4^{(0)} \mid 0^{(0)}\right\rangle+3 \sqrt{3} k^{2}\left\langle 4^{(0)} \mid 2^{(0)}\right\rangle+\frac{3}{2} k^{2}\left\langle 4^{(0)} \mid 4^{(0)}\right\rangle
\end{aligned}
$$

\checkmark Decreases with increase in energy and saturates as the system approaches to classical regime.

\checkmark Dechanneling probability follows similar trend in both anharmonic and harmonic cases.
\checkmark Anharmonic approximation is found to be less when compared to harmonic approximation.

- Initially well channeled configuration

$$
\begin{aligned}
\left\langle m^{(1)} \mid 0^{(1)}\right\rangle= & \left\langle m^{(0)} \mid 0^{(0)}\right\rangle-k C_{2}^{n}\left\langle m^{(0)} \mid 2^{(0)}\right\rangle-k C_{4}^{n}\left\langle m^{(0)} \mid 4^{(0)}\right\rangle+k C_{1}^{m}\left\langle m-2^{(0)} \mid 0^{(0)}\right\rangle \\
& -k^{2} C_{1}^{m} C_{2}^{n}\left\langle m-2^{(0)} \mid 2^{(0)}\right\rangle-k^{2} C_{1}^{m} C_{4}^{n}\left\langle m-2^{(0)} \mid 4^{(0)}\right\rangle-k C_{2}^{m}\left\langle m+2^{(0)} \mid 0^{(0)}\right\rangle \\
+ & k^{2} C_{2}^{m} C_{2}^{n}\left\langle m+2^{(0)} \mid 2^{(0)}\right\rangle+k^{2} C_{2}^{m} C_{4}^{n}\left\langle m+2^{(0)} \mid 4^{(0)}\right\rangle+k C_{3}^{m}\left\langle m-4^{(0)} \mid 0^{(0)}\right\rangle \\
- & k^{2} C_{3}^{m} C_{2}^{n}\left\langle m-4^{(0)} \mid 2^{(0)}\right\rangle-k^{2} C_{3}^{m} C_{4}^{n}\left\langle m-4^{(0)} \mid 4^{(0)}\right\rangle-k C_{4}^{m}\left\langle m+4^{(0)} \mid 0^{(0)}\right\rangle \\
+ & k^{2} C_{4}^{m} C_{4}^{n}\left\langle m+4^{(0)} \mid 4^{(0)}\right\rangle
\end{aligned}
$$

\checkmark Saturation of energy dependence occurs for lower energies in anharmonic approximation.

Energy dependence of positron dechanneling -Platelets

-Transition probability

$$
p_{i \rightarrow k}=\sum_{k=0}^{k_{\text {max }}}\left[\sum_{j=0}^{j_{\text {max }}}\left(p_{i \rightarrow j} \times p_{j \rightarrow k}\right)\right]
$$

- Dechanneling probability

$$
\chi_{i}=1-p_{i \rightarrow k}
$$

-Well channeled configuration

\checkmark Transition probability decreases with increase in energy and saturates at higher energies.
\checkmark Transition probability in platelet is less as compared to stacking fault case.

Initially well channeled configuration

\checkmark Dechanneling probability is independent of energy in case on classical regime. \checkmark At high energies platelet behave as stacking fault.

Conclusions

\checkmark The standard critical angle $\Psi\left(E^{-1 / 2)}\right.$ relation is not strictly valid for light relativistic particles (positrons).
\checkmark The area under the curve of total channeling probability for anharmonic case resembles with harmonic case for increasing energy.
\checkmark Total channeling and dechanneling probability are not independent of energy in the presence of stacking fault.
\checkmark Dechanneling probability follows similar trend in both anharmonic and harmonic cases.
\checkmark Saturation of energy dependence of dechanneling probability occurs for lower energies in anharmonic approximation.
\checkmark Dechanneling probability due to platelets is also independent of energy in classical regime as known for simple stacking faults.

Equation of motion of a crystalline undulator

$$
\tilde{x}=x-a \sin \left(k_{u} z\right)
$$

Where a is the amplitude of bending of the channel and

$$
k_{u}=\frac{2 \pi}{\lambda_{u}}
$$

The dislocation affected region,

Region I

The Schrödinger Equation for planar channeling

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta z^{2}}\right) \Psi^{I}(x, z)+U(x) \Psi^{I}(x, z)=E^{I} \Psi^{I}(x, z) \\
& \begin{aligned}
U(x) & =V_{0} \tilde{x}^{2} \\
& =V_{0}\left(x-a \sin \left(k_{u} z\right)\right)^{2}
\end{aligned}
\end{aligned}
$$

Region II

Centrifugal force proportional to $\mu^{2} / \rho_{0}{ }^{2}$ is responsible for the curved regions of the channel.
$\mu^{2}=l(l+1)$ with l as the orbital angular momentum quantum number and ρ_{0} is the radius of curvature of the channel.

Assume a finite number of undulator periods in a length of the dislocation affected region of the channel (low or medium dislocation concentration). If λ_{d} is the wavelength of the dislocation affected region and x_{d} is the corresponding amplitude of the waves
The equation of motion of both the waves

$$
\lambda_{d}=n \lambda_{u}
$$

$$
\begin{aligned}
& r_{1}=a \sin \left(n k_{d} z\right) \\
& r_{2}=x_{d} \sin \left(k_{d} z\right)
\end{aligned}
$$

Superposition of the two waves gives

$$
r=A \sin \left(k_{d} z+\varepsilon\right)
$$

Where A and ε are the effective amplitude and phase of the final wave.

$$
\begin{aligned}
A^{2} & =a^{2}+x_{d}^{2}+2 a x_{d} \cos \left[(n-1) k_{d} z-\phi\right] \\
\tan \varepsilon & =\frac{a \sin \left[(n-1) k_{d} z\right]+x_{d} \sin \phi}{a \cos \left[(n-1) k_{d} z\right]+x_{d} \cos \phi}
\end{aligned}
$$

$z(n m)$

The Schrödinger Equation

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Psi^{I I}(\rho, \varphi)+U(\rho) \Psi^{I I}(\rho, \varphi)=E^{I I} \Psi^{I I}(\rho, \varphi)
$$

With the channel periodically bent, the radius of curvature of the dislocated affected region,

$$
\tilde{\rho}_{0}=\rho_{0}-x_{d} \sin \left(k_{d} z\right)+A \sin \left(k_{u} z\right)
$$

The variation of parameters of the dislocation affected region with dislocation density,

Dislocation density	r_{0}	Radius of Curvature	2 z (Length of the curved part)
$10^{10} / \mathrm{cm}^{2}$	$0.5 \times 10^{2} \mathrm{~nm}$	$10.28 \times 10^{5} \mathrm{~nm}$	$6.28 \times 10^{2} \mathrm{~nm}$
$10^{9} / \mathrm{cm}^{2}$	$1.58 \times 10^{2} \mathrm{~nm}$	$10.266 \times 10^{6} \mathrm{~nm}$	$9.92 \times 10^{2} \mathrm{~nm}$
$10^{8} / \mathrm{cm}^{2}$	$0.5 \times 10^{3} \mathrm{~nm}$	$10.28 \times 10^{7} \mathrm{~nm}$	$6.28 \times 10^{3} \mathrm{~nm}$

Range of various parameters of the periodically bent channel affected with dislocation corresponding to a dislocation density of $10^{8} / \mathrm{cm}^{2}$,

a (cm)	λ_{u} $(\mathrm{~cm})$	R_{u} $(\mathrm{~cm})$	E (Mev)	x_{d} amplitude of the dislocation wave
1×10^{-7}	3.14×10^{-4}	2.5×10^{-2}	142.363	2.198×10^{-3}
10×10^{-7}	3.14×10^{-4}	2.56×10^{-3}	14.236	2.198×10^{-4}
100×10^{-7}	3.14×10^{-4}	2.5×10^{14}	1.412	2.198×10^{15}

The effective potential

$$
\begin{gathered}
V_{e f f}=V_{0}\left(\rho-\tilde{\rho}_{0}\right)^{2}+\frac{\hbar^{2}}{2 m} \frac{\mu^{2}}{\rho^{2}} \\
V_{e f f}(\xi)=\frac{\hbar^{2}}{2 m}\left[\frac{\lambda}{\tilde{\rho}_{0}{ }^{4}}\left(\xi-\tilde{a_{p}}\right)^{2}+U_{\text {min }}\right] \\
\xi=\rho-\tilde{\rho}_{0} \\
\lambda=3 \mu^{2}+b^{4} \tilde{\rho}_{0}^{4} \\
{\tilde{a_{p}}}_{p}=\frac{\tilde{\rho}_{0} \mu^{2}}{\lambda} \\
U_{\min }=\frac{\mu^{2}}{\lambda \tilde{\rho}_{0}^{2}}\left(\lambda-\mu^{2}\right) \\
b=\left(\frac{m \omega}{\hbar}\right)^{1 / 2}
\end{gathered}
$$

The frequency of oscillation in the region,

$$
\omega^{\prime}=\left(\frac{\hbar}{m}\right) \sqrt{\frac{\lambda}{\tilde{\rho}_{0}{ }^{4}}}
$$

With the effective wavefunction

$$
\Psi^{I I}(\rho, \varphi)=\sum_{m=0} R_{m}^{I I}\left[C_{m} e^{i \mu \varphi}+D_{m} e^{-i \mu \varphi}\right]
$$

Region III

The effective potential

$$
\begin{gathered}
V_{e f f}(\xi)=\frac{\hbar^{2}}{2 m}\left[\frac{\lambda^{\prime}}{\tilde{\rho}_{0}{ }^{4}}\left(\xi+\tilde{a_{p}^{\prime}}\right)^{2}+U_{\min }^{\prime}\right] \\
\lambda^{\prime}=-3 \mu^{2}+b^{4} \tilde{\rho}_{0}^{4} \\
\tilde{a_{p}^{\prime}}=\frac{\tilde{\rho_{0}} \mu^{2}}{\lambda^{\prime}} \\
U_{\min }^{\prime}=-\frac{\mu^{2}}{\lambda^{\prime} \tilde{\rho}_{0}^{2}}\left(\lambda^{\prime}+\mu^{2}\right)
\end{gathered}
$$

The frequency of oscillation in the region,

$$
\omega^{\prime \prime}=\left(\frac{\hbar}{m}\right) \sqrt{\frac{\lambda^{\prime}}{\tilde{\rho}_{0}{ }^{4}}}
$$

The wavefunction in region III

$$
\Psi^{I I I}(\rho, \varphi)=\sum_{m=0} R_{m}^{I I I}\left[G_{m} e^{i \mu \varphi}+H_{m} e^{-i \mu \varphi}\right]
$$

Region IV

$$
\Psi^{I V}(x, z)=X_{n}^{I V} I_{n} e^{i k_{n} z}
$$

$$
|T|^{2}=\frac{4 k^{2} \mu^{2} \tilde{\rho}_{0}^{2}}{4 k^{2} \mu^{2} \tilde{\rho}_{0}^{2} \cos ^{2}\left(2 \mu \varphi_{0}\right)+\left(\mu^{2}+k^{2} \tilde{\rho}_{0}^{2}\right)^{2} \sin ^{2}\left(2 \mu \varphi_{0}\right)}
$$

When $\lambda_{d}<\lambda_{u}$
Range of various parameters of the periodically bent channel affected with dislocation at $\lambda_{u}=2 \lambda_{d}$

Dislocation density	λ_{d} $(\mathrm{~cm})$	λ_{u} $(\mathrm{~cm})$	a (cm)	R_{u} $(\mathrm{~cm})$	E (MeV)
$1.5 \times 10^{9} / \mathrm{cm}^{2}$	1.66×10^{-4}	3.32×10^{-4}	1×10^{-7}	2.8×10^{-2}	150
			10×10^{-7}	2.8×10^{-3}	15
			100×10^{-7}	2.8×10^{-4}	1.5

Equation of motion,

$$
\begin{gathered}
\tilde{x}=x-a \sin \left(k_{u} v t\right) \\
\ddot{\tilde{x}}=\ddot{x}+a k_{u}^{2} v^{2} \sin \left(k_{u} v t\right) \\
\frac{1}{R}=a k_{u}^{2} \sin \left(k_{u} v t\right)
\end{gathered}
$$

$$
\ddot{\tilde{x}}+\frac{q e}{m \gamma} U(\tilde{x})-\frac{\gamma v^{2}}{R} \tilde{x}=0
$$

The maximum amplitude of oscillation

$$
\tilde{x}_{m}=\frac{m \gamma^{2} v^{2}}{q e V_{0} R}
$$

And the equilibrium axis shifts $=\frac{m \gamma^{2} v^{2}}{2 q e V_{0} R}$
$T=\left(\frac{m \gamma}{2 q V_{0}}\right)^{1 / 2} \operatorname{Sin}^{-1}\left\{1-\frac{2 q e V_{0} R}{m \gamma^{2} v^{2}} \cos \left(k_{u} z\right)\right\}$
The period of oscillation of the particle in the channel,

