

Sectoral Operational Programme "Increase of Economic Competitiveness" *"Investments for Your Future"*

me Light Infrastructure – Nuclear Physics (ELI–NP)

in

the European Regional Development F

THE ELI -NP FACILITY

Extre

FOR

NUCLEAR PHYSICS RESEARCH

CĂLIN A. UR

6th International Conference on Charged & Neutral Particles Channeling Phenomena – Channeling 2014 October 5 – 10, 2014 Capri , Italy FOR THE ELI-NP TEAM

Extreme Light Infrastructure (ELI)

the world's first international laser research infrastructure

pan–European distributed research infrastructure based initially on 3 facilities in CZ, HU and RO

ELI–Beamlines, Prague, CZ

High–Energy Beam Facility development and application of ultra–short pulses of high–energy particles and radiation

ELI-ALPS, Szeged, HU Attosecond Laser Science Facility new regimes of time resolution

ELI–NP, Magurele, RO Nuclear Physics Facility with ultra–intense laser and brilliant gamma beams (up to 20 MeV) novel photonuclear studies

ELI 4, to be decided Ultra–High–Field Science

direct physics of the unprecedented laser field strength

Extreme Light Infrastructure (ELI)

the world's first international laser research infrastructure

pan–European distributed research infrastructure based initially on 3 facilities in CZ, HU and RO

ELI–Beamlines, Prague, CZ

High–Energy Beam Facility development and application of ultra–short pulses of high–energy particles and radiation

ELI–ALPS, Szeged, HU Attosecond Laser Science Facility new regimes of time resolution

ELI–NP, Magurele, RO Nuclear Physics Facility with ultra–intense laser and brilliant gamma beams (up to 20 MeV) novel photonuclear studies

ELI 4, to be decided Ultra–High–Field Science direct physics of the unprecedented laser field strength

ELI–NP at Bucharest

ELI–NP will change the LANDSCAPE of Magurele (Bucharest)

ELI–NP at Bucharest

ELI-NP

Google

BUCHAREST

ring rail/road

Lasers Plasma Optoelectronics Material Physics Theoretical Physics Particle Physics

)54 m

Nuclear (IFIN–HH)

Tandem accelerators Cyclotrons ©–Irradiator Advanced Detectors Life & Environment Radioisotopes Reactor (decommissioning) Waste Proc.

ELI–NP Facility Concept

Nuclear Physics

Major research equipment : beyond present day state-of-the-art

- Ultra–short pulse high power laser system 2 x 10 PW maximum power
- Gamma radiation beam, high intensity, tunable energy up to 20MeV, relative bandwidth

~10⁻³

Buildings - one contractor, 33000 m² total

- Experimental area building
- Office building
- Guest house
- Canteen

Experiments – 7000 m²

 8 experimental areas for gamma, laser, and combined gamma + laser research activities

ELI–NP Building Structure

Nuclear Physics

ELI–NP Building Progress

ELI–NP Building Progress

ELI–NP Implementation Timeline

2010 2011 2012 2013 2014 2015 2016 2017 2018

ELI–NP Nuclear Physics Research

Nuclear Physics experiments

Nuclear Photonics

Nuclear Resonance Fluorescence

Photo-fission & Exotic Nuclei

Photo–disintegration and Nuclear Astrophysics complementary to other ESFRI Large Scale Physics Facilities

(FAIR, SPIRAL2)

Nuclear Physics diagnostics

Laser–Target interaction characteristics

Laser Driven Nuclear physics

Fission - fusion

 Applications based on high intensity laser and very brilliant © beams complementary to the other ELI pillars

ELI–NP in Romania selected by the most important science committees in Europe – ESFRI and NuPECC, in the 'Nuclear Physics Long Range Plan in Europe' as a major facility

Nuclear

ELI–NP HPLS

ELI–NP \rightarrow 2 x HPL up to 10 PW ~ 300 J / 30 fs & 10²³–10²⁴ W/cm²

Provided by THALES Optronique - France

6 output lines \checkmark 2 x 0.1 PW 2 x 1 PW 2 x 10 PW

any combination of 2 lines can be operated in parallel

Laser Beam Delivery

Laser Driven NP at ELI–NP

- Study of heavy ions acceleration mechanism at laser intensities > 10²³ W/cm²
- Deceleration of very dense electron and ion beams
- Understanding influence of screening effect on stellar reaction rates using laser plasma
- Nuclear techniques for characterization of laser-induced radiations

Laser Ion Acceleration

Short pulse high–power lasers \rightarrow strong charge separation by laser–matter interaction \rightarrow intense electric fields \rightarrow ion acceleration

Target Normal Sheath Acceleration (TNSA)

- Conversion of laser radiation into kinetic energy of relativistic electrons in µm thick targets
- Electrons move and recirculate through the solid target and appear at the surfaces where give rise to intense longitudinal electric fields

Radiation Presure Acceleration (RPA)

- Direct action of the ponderomotive force of the laser on the surface electrons
- Ultrathin targets (100–200 nm)
- Highly efficient energy conversion (> 60%)
- Ions and electrons accelerated as a neutral bunch -> avoid Coulomb explosion
- Solid state beam density : $10^{22} 10^{23} \text{ e/cm}^3$

P.McKenna, CETAL Workshop, Bucharest, Nov. 19, 2013

New Paradigm

In the 20th century Fundamental Research has been carried out and dominated by the Particle–based Paradigm: namely accelerator for Massive and Charged particles

The First example is the Extreme Light Infrastructure ELI

21st Century; the Photon Century Could basic research be driven by the massless and chargeless Photons??

Large Scale Lasers: Could they become the Next Large Scale Fundamental Research Infrastructures?

ELI–NP Gamma Beam System

Nuclear Physics

EuroGammaS Association

Academic Institutions INFN (Italy), Sapienza University (Italy), CNRS (France) Industrial Partners ACP Systems (France), ALSYOM(France), COMEB(Italy), ScandiNova Systems (Sweden)

and several Sub-Contractors: Alba (Spain), Cosylab (Slovenia), Danfysik (Denmark), IT (Slovenia), M+W Group (Italy), Menlo Systems (Germany), RI (Germany)

The Challenge : to design the *most advanced Compton* Gamma Beam Source based on *state_of_the_art* components, to be commissioned and delivered to users by *mid 2018 : an accelerator and a collider*

ELI-NP Gamma Beam Source: Bright, Monochromatic (bdw. 0.3%–0.5%), High Spectral Flux (10,000 ph/sec·eV), Tunable (0.2–20 MeV), Polarized (>95%)

TDR – arXiv:1407.3669 [physics.acc-ph]

Gamma-rays from Inverse Compton Scattering

photon scattering on ultra relativistic electrons ($\gamma \gg 1$) the most efficient frequency amplifier

'Photon accelerator'

The process is called inverse because the electrons lose energy rather than the photons

> the opposite of the standard Compton effect

A.Compton 1923

$$\boldsymbol{E}_{g} = 2g_{e}^{2} \times \frac{1 + \cos q_{L}}{1 + (g_{e}q_{g})^{2} + \boldsymbol{a}_{0}^{2} + \frac{4g_{e}\boldsymbol{E}_{L}}{\boldsymbol{mc}^{2}}} \times \boldsymbol{E}_{L}$$

$$\frac{4\gamma_e E_L}{mc^2} = \text{recoil parameter};$$

$$a_L = \frac{eE}{m\omega_L c} = \text{normalized potential vector of the laser field;}$$

$$E = \text{laser electric field strength}; E_L = \hbar\omega_L$$

Gamma-rays from Inverse Compton Scattering

photon scattering on ultra relativistic electrons ($\gamma \gg 1$) the most efficient frequency amplifier

'Photon accelerator'

The process is called inverse because the electrons lose energy rather than the photons

the opposite of the standard Compton effect

Maximum upshift head–on collision ($\theta_L=0$) & backscattering ($\theta_{\gamma}=0$)

 $E_g \sim 4g_e^2 \times E_L$

$$\boldsymbol{E}_{g} = 2\boldsymbol{g}_{e}^{2} \times \frac{1 + \cos \boldsymbol{q}_{L}}{1 + (\boldsymbol{g}_{e}\boldsymbol{q}_{g})^{2} + \boldsymbol{a}_{0}^{2} + \frac{4\boldsymbol{g}_{e}\boldsymbol{E}_{L}}{\boldsymbol{mc}^{2}}} \times \boldsymbol{E}_{L}$$

$$\frac{4\gamma_e E_L}{mc^2} = \text{recoil parameter};$$

$$a_L = \frac{eE}{m\omega_L c} = \text{normalized potential vector of the laser field;}$$

$$E = \text{laser electric field strength}; E_L = \hbar\omega_L$$

Gamma-rays from Inverse Compton Scattering

photon scattering on ultra relativistic electrons ($\gamma \gg 1$) the most efficient frequency amplifier

'Photon accelerator'

The process is called inverse because the electrons lose energy rather than the photons

the opposite of the standard Compton effect

$$\boldsymbol{E}_{g} = 2\boldsymbol{g}_{e}^{2} \times \frac{1 + \cos \boldsymbol{q}_{L}}{1 + (\boldsymbol{g}_{e}\boldsymbol{q}_{g})^{2} + \boldsymbol{a}_{0}^{2} + \frac{4\boldsymbol{g}_{e}\boldsymbol{E}_{L}}{\boldsymbol{mc}^{2}}} \times \boldsymbol{E}_{L}$$

	Waveband	Frequency (Hz)	Scattered Frequency (Hz) / Waveband
$\gamma = 10^3 \rightarrow$	Radio	10 ⁹	10 ¹⁵ / UV
	Far-infrared	3 x 10 ¹²	3 x 10 ¹⁸ / X–rays
	Optical	4 x 10 ¹⁴	4 x 10 ²¹ / γ–rays

Inverse Compton Scattering (ICS) – advantages

- strong correlation between scattering angle and gamma-ray energy
- strong forward focusing
 - \rightarrow collimation : good bandwidth and large spectral density

ELI–NP Gamma Beam System

Inverse Compton scatering

- · the most efficient frequency amplifier
- but very low–cross section ~ 10⁻²⁵ cm²

Requirements

- high—intensity electron beam
- very brilliant high rep. rate laser
- small collision volume

two acceleration stages (300 MeV and 720 MeV) High average power, high quality J-class 100 Hz psec Collision Laser

- two lasers (one for low– E_{γ} and both for high– $E\gamma$)
- Laser recirculation with μ m and μ rad and 3) sub-psec alignment/synchronization (metrology/interferometry optical cavities)

Warm electron RF Linac as for Linear

Collider and FEL's machines

1)

2)

- two interaction points low– $E\gamma$ < 3.5 MeV and high– $E\gamma$ < 19.5 MeV
- 4) Gamma beam collimation system
 - to obtain bandwidths $< 5 \times 10^{-3}$

Gamma Beam System – Layout

Master clock synchronization @ < 0.5 ps

Nuclear Physics

The Electron LINAC

Interaction Lasers: cryo-cooled Yb:YAG

	Low Energy Interaction	High Energy Interaction
Pulse energy (J)	0.2	2x0.2
Wavelength (<i>eV,nm</i>)	2.3,515	2.3,515
FWHM pulse length (<i>ps</i>)	3.5	3.5
Repetition Rate (<i>Hz</i>)	100	100
M ²	≤ 1.2	≤ 1.2
Focal spot size w_0 (μm)	> 28	> 28
Bandwidth (<i>rms</i>)	0.1 %	0.1 %
Pointing Stability (<i>µrad</i>)	1	1
Sinchronization to an ext. clock	< 1 <i>psec</i>	< 1 <i>psec</i>
Pulse energy stability	1 %	1 %

provider – Amplitude Systemes (France)

Laser Recirculation at IP

K.Dupraz et al., Phys.Rev. STAB 17 (2014) 033501

Gamma Beam Collimation

Main requirements are:

- Low transmission of gamma photons
 (high density and atomic number)
- Continuously adjustable aperture (to adjust the energy bandwidth in the entire energy range)
- Avoid contamination of the primary beam with production of secondary radiation

Collimation aperture varies from 20 mm to less than 1 mm, depending on the beam energy

Tungsten slits – 20 mm thick

Low–energy configuration:

12 independent slits with 30° relative angle

High – energy configuration: 14 independent slits with 25.7° relative angle

> Simulated radiography of the collimator assembly (log₁₀ pixel values)

(200 pixels × 10 µm)

2 mm

3D plot

GBS – Beam Specifications

Energy (MeV)	0.2 – 19.5	
Spectral Density (ph/s·eV)	$0.8 - 4.10^4$	
Bandwidth rms (%)	≤ 0.5	
# photons per shot within FWHM bdw.	≤ 2.6·10 ⁵	
# photons/sec within FWHM bdw.	≤ 8.3·10 ⁸	
Source rms size (µm)	10 – 30	
Source rms divergence (µrad)	25 – 200	
Peak brilliance (N _{ph} /sec·mm ² ·mrad ² ·0.1%)	10 ²⁰ – 10 ²³	
Radiation pulse length rms (ps)	0.7 – 1.5	
Linear polarization (%)	> 99	
Macro rep. rate (Hz)	100	N
# pulses per macropulse	32	
Pulse-to-pulse separation (nsec)	16	

Low–energy stage: Eγ < 3.5 MeV March 2017

High—energy stage: Eγ < 19.5 MeV September 2018

GBS – Experimental Setups

E2: Low energy gamma vault

- Nuclear Resonance Fluorescence
- Isotope-specific material detection, assay and imaging
- Medical isotopes
- E3: Positron spectroscopy vault

GSR: Photofission – exotic nuclei

- production of exotic nuclei
- E7: Experiments with combined laser and gamma beams

E8: High energy gamma vault

- (γ, n) cross sections
- (γ,*charged part*.) astrophysics
- Nuclear Resonance Fluorescence
- Photofission
- Medical isotopes

Nuclear Resonance Fluorescence (NRF) Photoactivation Photodisintegration (–activation) Photofission

Nuclear Resonance Fluorescence

Electromagnetic dipole response of nuclei

- p-nuclei, actinides
- scissor modes
- Pygmy Dipole Resonances
- Γ_0 and Γ/Γ_0 measurements

Observables

- Excitation Energy E_r
- Spin and parity J, π
- Decay Energies E_{γ}
- Partial Widths Γ_i/Γ_o
- Multipole Mixing δ
- Decay Strengths $B(\pi\lambda)$
- Level Width Γ (eV)
- Lifetime τ (ps as)

N.Pietralla

NRF – Polarization

 $W(\theta, \phi) = 1 + \frac{1}{2} [P_2(\cos \theta) + \frac{1}{2} \pi_1 \cos(2\phi) P_2^{(2)}(\cos \theta)]$

- Elastic scattering distribution not isotropic about incident polarization plane.
- No intensity along oscillating dipole vector
- Azimuthal rotation by 90° for M1 and E1 distributions
- Observable only for linearly polarized beam

N.Pietralla, H.R. Weller et al., NIM A 483 (2002) 556.

NRF – Setup

ELIADE – ELI–NP Array of DEtectors

- use of composite HPGe
 detectors → higher photopeak
 efficiency due to add–back
- EXOGAM or TIGRESS type Clover detector (*segmented*) with AC shield (rear back and back–catcher)

4 Clovers @ 90° + 4 Clovers @ 135° 4 3"x3" LaBr₃ det. @ 90 deg. $\varepsilon_{ph} \sim 10-12\%$ at minimum distance of 11 cm from the target

Photofission

- Study photofission barriers, cross sections and rare fission modes
 - High resolution photofission studies in actinides, 2nd and 3rd minimum, angular and mass distribution of the fragments
 - Ternary fission studies
 - Measurements of absolute photofission cross sections
 - Separation, manipulation and experiments with fission fragments
 - Emphasis on the isotopes of refractory elements
 - IGISOL technique: gas catcher, RF ion guide, mass separator
- In-beam gamma-ray spectroscopy of fission fragments
 - gamma-ray detectors (Clover, LaBr₃)
 - g–factors

THGEM Bragg Chamber + Si DSSSD

Astrophysics Related Studies

Production of heavy elements in the Universe – a central question for Astrophysics

- Neutron capture cross section of s-process branching nuclei with inverse reactions
 - studies on long-lived branching points (e.g. ¹⁴⁷Pm, ¹⁵¹Sm, ¹⁵⁵Eu) showed that the recommended values of neutron capture cross sections in the models differ by up to 50% from the experimentally determined values

- Measurements of (\bigcirc,p) and (\bigcirc,\langle) reaction cross sections
 - p-process nucleosynthesis ٠
 - clustering phenomena in light nuclei ٠
 - $^{19}F(@,p)^{18}O, ^{24}Mg(@,\alpha)^{20}Ne$
 - photodisintegration: ${}^{16}O(\odot, \alpha){}^{12}C$, ${}^{22}Ne(\odot, \alpha){}^{18}O$,

48.6.

Si DSSSD

Perspectives

- a new research facility is being under construction at Bucharest
 - HPLS
 - GBS
- research opportunities
 - <u>nuclear physics</u>
 - nuclear photonics
 - HP laser driven
 - applications
- young researchers are invited to join the fun !
 - job opportunities: post–doc, junior and senior researchers, engineers
 - for details visit the website www.eli-np.ro/jobs.php

Disclaimer

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro