Channeling 2014, Capri-Naples, Italy Joseph REMILLIEUX, IPNL, Lyon, France

High Energy Channeling and the Experimental Search for the Internal Clock Predicted by L. de Broglie

J. Remillieux¹, X. Artru¹, M. Bajard¹, R. Chehab¹, M. Chevallier¹, C. Curceanu², S. Dabagov², D. Dauvergne¹, H. Guérin¹, M. Gouanère¹, R. Kirsch¹, J. Krimmer¹, J.-C. Poizat¹, C. Ray¹, Y. Takabayashi³, E. Testa¹ ¹IPNL, Institut de Physique Nucléaire de Lyon, IN2P3, Université de Lyon, France ²LNF, INFN, Laboratori Nationali di Frascati, Italy ³SAGA Light Source, Tosu, Saga, Japan

- I- Ion channeling
- **II- Electron channeling**
- III- Search for an electron internal clock

I- Heavy ion channeling and blocking Lyon-Paris-Caen-Albany

- Atomic and nuclear interactions of MeV/u to GeV/u channeled ions with the « quasi-free Xtal electron gas »
 - Radiative Electron Capture REC
 - the inverse of Photo-Ionisation @ GANIL-Caen and GSI-Darmstad
 - Resonant Transfer and Excitation RTE and RT2E
 - RTE, the inverse of Auger Transition, @ GANIL
 - RT2E, a trielectronic interaction: only upper limit of σ , @ GANIL
 - Nuclear Excitation by resonant Electron Capture NEEC
 - the inverse of Internal Conversion:
 - only an upper limit for the excitation σ
 of 14 KeV transition in ⁵⁷Fe, @ GANIL
 - project @GSI-FAIR: excitation of 45 KeV trans. in ²³⁸U
- Xtal blocking and nuclear fission times
 - Measurement of 10⁻¹⁷s to 10⁻¹⁹s lifetimes
 - experiments with Pb and U beams, @ GANIL
 - In Si Xtal
 - In Ge and Ni Xtal -> production of super-heavy nuclei

Ion desorption from a thin aligned Ge Xtal under impact of fast Pb ions

Vacuum-assisted heavy ions photoionisation at relativistic energies

- Photoionisation with GeV photons, @ ESRF-Grenoble (GRAAL beam line)
 - COLLIMATOR Pb ABSORBER TAGGING CLEANING MAGNET DIPOLE - High energy photons are produced 6 GeV e by Compton backscattering CALORIMETER of a laser beam with MIRROF ASER the synchrotron e⁻ beam BACKSCATTERING REGION TARGET MAGNET **B2 B1** B3 VACUUM
 - Measurement of K-shell ionisation cross sections in Au and Ag amorphous foils

Ge

CHAMBER

- evidence for an ionisation channel increasing linearily with target thickness due to (e⁺e⁻) pair creation, on nuclei or on electrons, from the negative-energy-continuum
- To be explored with aligned Xtal targets
 - Crystal-assisted photoionisation along <ijk> axis is expected
 - when the coherence length for pair creation becomes $> d_{<ijk>}$

II – High energy electron channeling Lyon-Annecy-CERN-Albany

Radiations along Xtal planes at relativistic energies:

synchrotron radiation

- quasi-continuum
- coherent bremsstralhung
 - 1 resonance + harmonics
- channeling radiation
 - discrete lines (M.Kumakhov)

Experiments @ ALS-Saciay

- 20-100 MeV electrons in a diamond Xtal (1µm thick)

- study of channeling radiation spectra
 - from the pseudo-atomic « Xtal-electron » system
- by-product: first observation of a resonance (?)
 - in the electron « rosette motion »
 - compatible with de Broglie « internal clock »

Radiations at ultra-relativistic energies

- At incident electron energies > 100 GeV
 - an aligned crystal => super-critical fields laboratory
 - B > 10⁹ Teslas, E > 10¹⁶ V/cm
 - with strong-field QED effects

 on pair creation and on radiation
- Experiments in Ge Xtal, @ CERN
 - Axial channeling of 20-150 GeV e⁻
 Evidence for a strong radiation peak
 - due to a cascade of cooling events in the rosette motion
 - by radiations and pair creations

Application of channelling radiation to the development of an intense positron source Lyon-Orsay-Novosibirsk-Tomsk-KEK-CERN-IHEP

- Aligned crystal targets in GeV electron beams
 - Experiments in W crystals @ LAL-Orsay and CERN (WA103)
 - positron production enhanced by a factor 4 along <111> axis

- Such a Xtal positron source, has been used for 1 year @ KEKB

- Toward an hybrid positron source for CLIC project
 - photons are first produced in an aligned Xtal target
 - positrons are then produced in a granular amorphous target, for better heat dissipation

- Next step, @ KEK: test of the granular converter
 - made @LAL-Orsay, with W balls (2.2mm in diameter)

III – Search for an electron internal clock Lyon-Annecy-Albany-CERN-Saga

- Back to the Louis de Broglie thesis (1924):
 - in the geometrical interpretation of Q.M.
 - any massive particle is surrounded, in its rest frame, by a wave $\Psi = a_0 \exp(2\pi i v_0 t)$ with $v_0 = m_0 c^2/h$ ($\approx 10^{21} s^{-1} \text{ for } e^{-}$)
 - for a particle moving at velocity β
 - the wave frequency, in the lab frame, is $v = \gamma v_0$
 - the displacement of the particle, during one period of its "internal clock", is $d_{internal clock} = c\beta\gamma/v_0$
 - a distance of the order of a few Å for 100 MeV e⁻ (≈ interatomic spacings !)
- The idea: the "rosette motion" of an electron around an <ijk> axis could be perturbed by its internal clock, when its velocity β is adjusted in order to fit the spatial resonant condition d_{internal clock} = d <ijk>
 - in Si <110>, the resonance energy is expected at **81 MeV**

The first experiment @ ALS – Saclay 1980

Set up to measure changes in the angular divergence of transmitted electrons

Electron energy scan along <110> axis

 Rosette motion signature in a 1µm thick Si crystal

at ≈ 81 MeV/c

Alternative interpretations

Other experimental evidences in very slow ion-laser interactions
 "zitterbewegung motion" of trapped ions, R. Gerritsma et al, Nature 2010
 "a clock directly linking time to a particle mass", S.Y. Lan et al, Science 2013

Further *RICCE* experiments *Research of Internal Clock by Channelling of Electrons*

- *RICCE* @ LNF- BTF Frascati
 - the BTF facility is a secondary (e^+/e^-) beam line
 - 80 160 MeV electrons have been channeled in Si and Ge Xtal
 - but ... despite various improvements of the beam line optics

we were unable to step the incident energy

» without inducing small changes in the beam direction at the Xtal

• Future of *RICCE* @LNF - Frascati

– possibly on the new channelling beam line @ SPARC ?

A new program RICCE @ SAGA-LS-Japan

- Linac e⁻ beam
- $25|5 \text{ MeV } e^- \rightarrow 1-\mu\text{m-thick Si crystal}$ $\overset{\text{D}=5.12 \text{ m}}{\overset{\text{D}=5.12 \text{ m}}{\overset{\text{D}=255 \text{ MeV } e^-}{\underset{\text{Crystal on goniometer}}}}$ esonanceignment $\therefore 12 \text{ deg}$ mance observed axes (110) (k, l) = (0, 2)
- Search for clock resonance
 - in (220) planar alignment
 - expected at θ = 9.12 deg
 - no planar resonance observed
 - but high index axes
 - <1,1,9> , <3,2,26>, ...
 - future: axial directions
 - <100> at 114 MeV, <210> at 255 MeV, ...
- Another suggestion to cross the resonance at a fixed incident beam energy
 - tilt the crystal along a series of high index axes with close d_{<ijk>} values, in order to cross the d_{internal clock} value