Diagnostics of polycrystals using polarization bremsstrahlung from relativistic electrons in backscattering geometry

V.I. Alexeyev^{1,2}, A.N. Eliseyev^{1,2}, E. Irribarra¹, I.A. Kischin¹, A.S. Kubankin^{1,2}, V.V. Polyansky², R.M. Nazhmudinov^{1,2}, V.I. Sergienko^{1,2}

¹ Belgorod State University, Belgorod, Russia
 ² P.N. Lebedev Physical Institute RAS, Moscow, Russia

The dependence of PB spectra on observation angle.

1 – microtron; 2 – electron beam; 3 – carbon collimators; 4 – deflecting magnets;
5 – magnetic quadrupole lenses; 6 – magnetic V-corrector; 7 – target;
8 – X-Ray collimators; 9 – X-Ray detector; 10 – X-Ray signal;
11 – multichannel proportional detector; 12 – Faraday cup.

PBBS from different polycrystalline targets.

Target	Peak	Position experiment	Spectral width	Position theory
Al	(220)	4.351 кeV ± 6 eV	$140 \text{ eV} \pm 13 \text{ eV}$	4.329 кeV
Nb	(200)	3.796 кeV ± 9 eV	$130 \text{ eV} \pm 20 \text{ eV}$	3.756 кeV
Nb	(211)	4.605 кeV ± 13 eV	$211 \text{ eV} \pm 30 \text{ eV}$	4.600 кeV
Mo	(200)	4.002 кeV ± 5 eV	$150 \text{ eV} \pm 10 \text{ eV}$	3.940 кeV
Мо	(211)	4.851 кeV ± 8 eV	$130 \text{ eV} \pm 18 \text{ eV}$	4.825 кeV
W	(200)	3.962 кeV ± 3 eV	$106 \text{ eV} \pm 5 \text{ eV}$	3.924 кeV

Target	Peak	Position experiment	Spectral width	Position theory
Al	(220)	4.351 кeV ± 6 eV	$140 \text{ eV} \pm 13 \text{ eV}$	4.329 кeV
Nb	(200)	3.796 кeV ± 9 eV	$130 \text{ eV} \pm 20 \text{ eV}$	3.756 кeV
Nb	(211)	4.605 кeV ± 13 eV	$211 \text{ eV} \pm 30 \text{ eV}$	4.600 кeV
Мо	(200)	4.002 кeV ± 5 eV	$150 \text{ eV} \pm 10 \text{ eV}$	3.940 кeV
Мо	(211)	4.851 кeV ± 8 eV	$130 \text{ eV} \pm 18 \text{ eV}$	4.825 кeV
W	(200)	3.962 кeV ± 3 eV	$106 \text{ eV} \pm 5 \text{ eV}$	3.924 кеV

PBBS from 40µm Ni polycrystal. The average grain size is 300nm.

PBBS from 30µm Ni polycrystalline foil. The average grain size is 50nm. Different orientation angles.

The orientation dependence of PBBS peaks (111) and (220) from Ni textured polycrystalline foil (1). The comparison with XRD (2).

PBBS (220) distribution width	XRD distribution width	Difference
13.7°	9.2°	4.5 °

The orientation dependence of PBBS peak (200) from W textured polycrystalline foil (1). The comparison with XRD (2).

PBBS (220) distribution width	XRD distribution width	Difference
10.2 °	5.6°	4.6 °

Summary

Narrow PBBS coherent peaks are reliably fixed from polycrystalline foils of Al, Ni, Nb, Mo, W.

The possibility to detect PBBS peaks from nanodispersive polycrystals is confirmed.

The orientation dependences of PBBS peaks from textured polycrystalline foils are measured and compared with analogous XRD results.

The results present interest for the further development of a new energydispersive method for diagnostics of atomic structures of polycrystals.

Thank you for attention!