INFN Ferrara

LOGOS

(Laue Optics for

Gamma-ray ObservationS)

Andrea Mazzolari

Capri, 08/10/2014

X-ray optics

Direct view instruments:

Iow resolution Iow sensitivity Iong exposition time Iarge weight

Picture of the galactic plane by INTEGRAL satellite during its first 10 months of activity.

Diffraction

Crystal: solid composed of atoms in a periodic structure at long range

BRAGG DIFFRACTION

 $2d_{hkl}sin\theta_B = n\lambda$

X-Ray Lens

Astrophysical applications

Supenovae IA

Study of the 847 keV line emitted during the ⁵⁶Ni decay chain produced during explosion

Study of gamma and X-ray emission from compact objects

Positron-electon annihilation line at 511 keV

- ✓ Positron sources in the centre of galaxies
- ✓ Supernove type 1 A
- \checkmark Distribution of antimatter
- ✓ Distribution of dark matter

Medical applications

Nuclear Medicine

✓ Increase in the SPEC resolution and sensitivity

Reduction of the dose of radioisotope to inject

Mosaic or curved crystals

mosaic

Quasi-mosaic crystals

Quasi-mosaic curvature

Crystals production - Grooving

MECHANICAL MANUFACTURING:

•Machine : DISCO Automatic dicing saw DAD 3220

2 mm

Crystals production - Grooving

mm

15

12-

9

6

3 -

----0 0 <110>

3

0.176

Crystals production – Carbon Fiber

Crystals production – Ion Implantation

Crystals production – Ion Implantation

X Profile

Rq	0.32 um
Ra	0.28 um
Rt	1.09 um
Rp	0.29 um
Rv	-0.80 um

Angle	0.00	mrad
Curve	11.53	m
Terms	None	
Avg Ht	-0.44	um
Area	4477.55	um2

0.40 um
0.34 um
1.30 um
0.50 um
-0.80 um

Angle	0.00	mrad
Curve	9.35	m
Terms	None	
Avg Ht	-0.35	um
Area -3	3533.93	um2

Interferometric profilometer

Vertical resolution 1 nm

Orizontal resolution 1 um

Interferometric profilometer

High resolution X-ray diffractometer

High resolution X-ray diffractometer

Modelization – Theory of Elasticity

Along X direction $\frac{1}{R} \propto \frac{d^2 w}{dx^2} = -\frac{M}{I}(S_{11} + S_{12})$ Along Y direction $\frac{1}{R} \propto \frac{d^2 w}{dy^2} = -\frac{M}{I}(S_{12} + S_{22})$

Modelization – Theory of Elasticity

Modelization – Theory of Diffraction

Reflectivity

$$\eta = \frac{I_D}{I_0} = \left(1 - e^{-\frac{t\pi^2 d}{\Lambda^2 \alpha}}\right) e^{-\frac{t\pi^2 d}{\Lambda^2 \alpha}}$$

Temperature

Intrisic width

Mosaicization

 $LD(\theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\theta - \theta_B)^2}{2\sigma^2}}$ $MC(\theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\theta - \theta_B)^2}{2\sigma^2}}$

 $I = I_0 e^{-\frac{k_B T G^2}{M\omega^2}}$

Variation of interplanar distance

$$P(\theta) = \begin{cases} \frac{1}{|\theta_{+} - \theta_{-}|} & \theta_{B} + \frac{\Delta \theta}{2} \ge \theta \ge \theta_{B} - \frac{\Delta \theta}{2} \\ 0 & altrove \end{cases}$$

Beam chromaticity
$$CF(\theta) = \begin{cases} \frac{1}{\Delta\theta_{cr}}, & \theta_B + \frac{\Delta\theta_{cr}}{2} \ge \theta \ge \theta_B - \frac{\Delta\theta_{cr}}{2} \\ 0, & altrove \end{cases}$$

D

Beam divergence $DF(\theta) = \begin{cases} \frac{1}{\Delta \theta_{div}}, & \theta_B + \frac{\Delta \theta_{div}}{2} \ge \theta \ge \theta_B - \frac{\Delta \theta_{div}}{2} \\ 0, & altrove \end{cases}$

Matarial	C;
Material	51
Lateral dimensions (mm2)	25×25
Thickness (mm)	1
Grooves number	15×15
Grooves depth (mm)	0.5 ± 0.01
Grooves width (mm)	0.15
Distance between grooves (mm)	1
Surface curvature radius (m)	341 ± 25
FWHM experimental (arcsec)	15.4 ± 1.1
Diffraction efficiency (theoretical)	93.1 ± 4.2
Diffraction efficiency (experimental)	94.0 ± 3.0

The The The All

Conclusion

Curved focusing crystals

produced by

✓ Indentation

- Carbon Fiber Deposition
- ✓ Ion Implantation

Hardware

Software modelization

☑ Interferometer

☑ Dicing Machine

☑ Diffractometer

✓ Theory of Elasticity

✓ Theory of Diffraction