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Applications: Imaging & X-ray absorption fine structure
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To realize highly sensitive phase-contrast imaging for the
material sciences, especially for soft materials, a PXR-based x-
ray source is one of the most attractive candidates.

—

B For practical imaging,

- High energy monochromatic x-rays with a flux of 10%- 1010 /s
are needed

- A compact PXR-based x-ray source with easy access to the
PXR working area Is required.

Therefore, we are developing a new compact PXR-based x-ray
source.



1. Production of high energy monochromatic x-rays

with a flux of between 10° and 1010 /s
——
It is proposed that this x-ray flux can be obtained using a 75
MeV high duty cycle electron linac with an average current of
20-30 PA.

It is not too difficult to develop a linac with this level of
performance.

2. With regard to a compact PXR-based x-ray source

——
Significant problems for applications using PXR are the size

of the linac, the volume of the radiation shield, and having
access to the working area of the PXR source.



Why do we need a shield wall?

The reason iIs that :

- In conventional electron linacs, the e-beam is accelerated and

strikes a target. The residual electrons are subsequently absorbed
In @ massive beam dump.

- The energy of the electrons is released from the beam dump as
radiation in the form of y-rays and neutrons.

Therefore, the linac needs a large shield wall to prevent this
radiation from escaping.
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We would like to reduce:

1. To reduce the size of the linac

A linac with a high acceleration gradient is desirable to reduce

the size of the linac itself.
—I—

This can be achieved by using C-band high gradient accelerating
and decelerating cavities, rather than the S-band accelerating
cavity used in the traditional linac.

2. To reduce the size of the shield wall

Suppressing the background radiation, which is mainly produced
at the beam dump, is a very effective means of reducing the
dimensions of the PXR source.

—_—

This can be done by introducing a decelerating cavity to remove
energy from the electron beam.



- If we add a suitable decelerating cavity in front of the beam dump,
the e-beam is decelerated and the linac generates either no
radiation or only a very small amount of radiation.

.

- This system doesn’t need a large surrounding radiation shield.
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- In this system, the RF power is converted into electron beam (EB) energy
In the accelerating cavity, and then the energy in the EB is used to generate
the PXR. Subsequently, the energy in the EB is converted back into RF
power in the decelerating cavity.

- The EB loses most of its energy In the decelerating cavity so that very little
radiation is emitted from the beam dump.
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- However, this system consumes all the energy transferred to the EB by
the accelerating cavity.



- Therefore, we proposed using an energy recovery linac (ERL) for the
PXR source in order to reduce the surrounding radiation shield.

- In this system, the electron beam energy is converted into RF power,
which is then added to the RF power from the klystron.
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We originally planned to use superconducting RF (SRF) for the ERL

system, but this would have required a helium refrigerator with high power,
large size and high cost.

(RF cavities made from conducting materials such as ordinary Cu cannot
be operated constantly with high electro-magnetic fields since the cavities
would become too hot.)
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We focused on using high-purity Cu as the cavity material,
because this has low electrical resistance.



Temperature dependence of
copper with various resistivities
RRR: Residual Resistivity Ratio
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Electrical resistivity at RT and 4.2K
of commercial high-purity Cu

Purity Annealing Time RRR

Temp. RRR: Residual Resistivity Ratio
CC) (hrs) R(RT), R(4.2K)
6N8 500 0.5 2130 RT: room temperature
6N8 500 3.5 6610
TN 500 3.0 6400
TN 500 3.0 6500
TN non 0 57.6

High purity Cu annealed at 500 C has a high RRR values,
that is, very low resistivity.



To estimate the efficiency with which energy is recovered, we
need data giving the temperature dependency of the Q value of
the high-purity Cu cavity.

We attempted to measure the Q value of the Cu test cavity.

A test cavity designed for the C-band 211/3 mode
was manufactured in high-purity copper (RRR- around 6000).
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This test cavity was cooled to around 20K and the temperature
dependency of the Q value was measured.
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Model of the RF flow in a traveling-wave type ERL
using RF cavities made from high-purity Cu

Klystron
Directional

Reflectionless
CO,!Dle_f_
1

terminator

..
Beam dump
ETTTTEETE ER N T TR =

Electron injector EACc_eIeratm orkingDecelerating
‘cavity

RF power

~
7

LB B N § B |

RF povx}er 5
convert:ed inte
EB energ

'Energy recapture
§

RF Power
EB Energy

v

RF power lost in this circuit
] is supplied from the Klystron

B %nergy is converted into RF power
]



An example of the calculated relationship between the RF power
and the energy transferred to the electrons in the cavity @ RT

ERL model showing the RF power flow and Temperature:: RT (300K)

the energy transferred to the electrons. Accelerating energy: 75 MeV
Power ﬂOW & Energy transfer Accelerat?ng frequency: 5.712GHz
@ RT, 22.5MW Accelerating mode: 21/3
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An example of the calculated relationship between the RF power
and the energy transferred to the electrons in the cavity @ 20K

ERL model for the RF power flow and Temperature: 20K
energy transferred to the electron beam. Accelerating energy: 75 MeV
Accelerating frequency: 5.712GHz
Power flow & Energy transfer Accelerating mode: 211/3
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Calculated relationship between the RF power and the energy
transferred to the electron beam in the cavity of our proposed
prototype machine.

Power flow & Energy transfer @20K, 135MW

P: RF power, E: Energy gain of EB
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Temperature: 20K
Accelerating energy: 75 MeV
Accelerating frequency: 5.712GHz
Accelerating mode: 211/3

Accelerating & decelerating cavity:
disk-loaded traveling wave, 1300cm
Input RF power: 135MW
Macro pulse beam current: 0.0 — 1.0A
Average beam current: 20-240pA

At this beam current,
the recovered RF power is small.

Accelerated EB loses almost all of
it's energy.

A very small amount of radiation is
emitted from the beam dump



Designed normal-conducting compact cryo-linac
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PXR generator
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Schematic view of our proposed cryo-linac

Electron energy: 75-MeV
Accelerating frequency: 5.712 GHz, C-band
Beam current: 20-30uA (future: a few 100 pA)




Parameters of our proposed prototype cryo-linac

acceleration freq.
accelerating mode
accelerating structure
cavity material

cavity length

cooling temp.

iInput RF power
electron energy

norm. emittance
macro-pulse beam current
macro-pulse length
average beam current

total x-ray flux
variable x-ray energy

5.712 GHz
211/3

disk loaded traveling wave
pure copper (RRR-6000)
1300 mm

20 K
45 MW

~ 75 MeV

< 51 mm mrad

~0.2A

~ 3.5 uS

20 ~ 30 pA

10°~1019 /s
5—-50 keV
due to crystal rotation



Proposed cryo-linac under construction
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Summary

- A compact electron linac with an average beam current
of 20-30 pyA at 75 MeV for PXR radiation is proposed.

- A normal conducting high gradient C-band accelerating cavity
with a high Q-value was studied.

- This study suggests that an ERL system using high-purity Cu
for the cavity material in the temperature region below 20 K can
be used to generate PXR radiation.

- Much of the EB energy can be converted into RF power
In the decelerating cavity, thereby reducing the amount of
radiation generated at the beam dump to a very low level.

-These benefits suggest that the system proposed here can be
effective in many x-ray imaging applications, including medical
Imaging.

- The proposed cryo-linac is currently under construction.
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