Bent Crystal Extraction from a 100 TeV Proton Collider

W.Scandale, CERN, LAL, Univ. Paris Sud Orsay, Orsay France, INFN Sezione di Ferrara, Dipartimento di Fisica, Universita` di Ferrara, Italy A.Kovalenko, A.Taratin, Joint Institute for Nuclear Research, Dubna, Russia

Channeling 2014, October 5-10, 2014, Capri, Italy

- The work is motivated by the FCC design proposal at CERN
- The JINR has expressed the interest of participation in the FCC

The two topics:

- high energy accelerators \&
- crystals applications are combined naturally in FCC

Crystal assisted extraction and colimation of protons over energy range from 0.450 to $50(100) \mathrm{TeV}$ is presented .

INTERNATIONAL SYMPOSIUM
JINR Dubna, 10-15 November 2014

THE $70^{\text {TH }}$ ANNIVERSARY
 OF THE DISCOVERY OF
 PHASE STABILITY PRINCIPLE

Joint Institute for Nuclear Research,
Joint Institute for Nucie
141980, Dubna, Russia
P.N.Lebedev Physics Institute,
Leninskiy prospect 53 , Moscow Leninskiy prospect 53, Moscow

- In the 30's of the last century search for new phenomena in cosmic space, which are resulting in the observables at the men-made detectors, was the main point of V.Veksler's interests.
- Veksler's proposal (1944):
how to overcome "relativistic barrier " at resonant acceleration of charged particles was really outstanding.

The auto-phasing (phase stability) effect make it possible operation of all high energy particle accelerator.

10-GeV proton accelerator at JINRSynchrophasotron (1957) - was really the first base for the world high energy physics research

- 1979: The experiment initiated and leading by Edward Tsyganov at LHE JINR synchrophasotron proved possibility of high energy proton beam deflection by bent crystal

Fig. 4. Outgoing angular distributions in the vertical piane for protons using various crystal bending angles and selecting channeled particles. (a) o mrad, (b) 1.0 mrad , (c) 3.0 mrad , (d) 26.0 mrad.

EXPERIMENTAL INSERTIONS FOR THE LHC

> by
> Walicr Scandale, CERN, dir SL, Geneva.

Luminosity and number of interactions.

In a hadron collider the most important parameters are the luminosity and the beam energy.

For round bearus and head-on collisions. the luminosity L is given by:

$$
L=\frac{k N_{b}^{2} f_{0} \gamma}{4 \pi \varepsilon^{\varepsilon} \beta^{*}}
$$

where k is the number of bunches in each beam
N_{b} is the number of particles per bench,
f_{0} is the revolution frequency.
γ is the energy divided by the rest mass of the particles,
$\beta^{2}=\gamma^{2} \beta^{*}$ is invariant emittance.
B^{*} is the tetatron function at the crossing point.
The most fundamental limitation in the parformnnces of the LHC comes from the heambeam interaction, which has two compunents, the head-on interaction which occurs at the wanted interaction points, and the long range interactions, which oweur on either side of the intersction region in the portion of the beam pipe which is common to both beam. The importance of these effects is determined by the beam-beam tune shift parameter $\bar{\xi}$

$$
\xi=\frac{N_{b} r_{p}}{4 \pi \varepsilon^{*}}
$$

where r_{p} is classical madius of the proton.
The smidies of the CERN SppbarS and at the Fermilab Tevatron have shown that the total tune spread due to the heam-heam interfection and to the magnetic imperfections has to be limited to below 0.02 .

By assuming a contribution of the lattice non-linearities to the tune-spread smaller than 0.005 , as assured by the lattice cesign, the permissible total beam-beam tune spread $\Delta \mathrm{Q}$ is 0.015 . This quantity has to be shared by the different interaction regions, and it determines the ultimare performance of the collider.

The total beam current might be limited by the increasing difficulties of controlling the particle losses in the superconducting magnets and of dumping the beams, as well as by the heat load on the cryogenic syscem due to the synchrotron radiation.

Using the parameters of Tabic 1, the LHC has been optimized for three simultaneous pp collision with a maximum luminosity of $1.6510^{3 /} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, and a total energy in the center of mass of 14.4 TeV .

The studies of crystal applications at JINR in the 90's

The studies of 100 TeV range accelerators at JINR in the 90's

- A.M.Baldin \& A.D. Kovalenko, " How a 100 TeV synchrotron/ collider based on Nuclotron-type cryomagnetic system would look" (1995), JINR Rapid communications, also at APS meeting (Indianapolic, May, 1995).
- A.D. Kovalenko, "VLHC based on cooled iron intermediate temperature field superconducting magnets " (2001), Intern. Conference on High Energy Accelerators, March, 2001, Tsukuba, Japan.

Bent Crystal Extraction of the SSC Beam with RF Noise Induced Diffusion
H.-J. Shih and A. Taratin

March 1991

Proposed Extraction Scheme. (a) The horizontal doglet with a bent crystal inserted about 200 m upstream of the Lambertson string. The dashed line with an arrow indicates the extracted beam line. (b) The cross-sectional view at the position of the crystal. Using large dispersion in combinaion with ri noise induced difusion, a small fraction of the beam intercepts che crystal. (c) The beam that the bent crystal intercepts and deflects vertically, has been separated from the circu lating beam by 2 cm and passes the field-free region.

Layout of the SSC with the Extraction Elements: RF System in the West Utility Straight, Bent Crystal in the East Utility Straight,
External Beam Line for Extraction and SFT Experimental Area

Channeling parameters: protons, 50 TeV , Si crystal

- Dechanneling length due to scattering by crystal electrons, $S_{1 / e} \sim E, 10 \mathrm{~cm}, \mathrm{p} 200 \mathrm{GeV}$ (FNAL) $\rightarrow \mathrm{S} 1 / \mathrm{e}=50 \mathrm{~m}$
- Critical channeling angle $\boldsymbol{\theta}_{\mathrm{c}}=\left(\mathbf{2} \mathrm{U}_{\mathrm{o}} / \mathrm{pc}\right)^{1 / 2} \rightarrow \theta_{\mathrm{c}}=1 \mu \mathrm{rad}$
- Critical radius of crystal bending $\mathbf{R}_{\mathrm{c}}=\mathrm{pc} / \mathbf{e E}_{\mathrm{m}} \rightarrow \mathrm{R}_{\mathrm{c}}=85 \mathrm{~m}$
- Effective potential $\mathbf{U}_{\text {eff }}(\mathbf{x}, \mathrm{R})=\mathrm{U}(\mathbf{x})+\mathrm{xpc} / \mathrm{R}$

straight

$R=7 R_{c}$

Capture efficiency:

Capture efficiency decreases because of well depth reduction

Crystal bend radius should be R > Rc

Deflection efficiency by fixed angle - dependence on \mathbf{R}

For single passage through a crystal
Deflection efficiency is maximal $P_{d m}$ at some radius R_{m}, crystal length $L_{d m}$

$$
\mathrm{P}_{\mathrm{dm}}=85 \%, \mathrm{~L}_{\mathrm{dm}}=12 \mathrm{~cm}
$$

$$
P_{\text {exm }}=93 \%, L_{\text {exm }}=3 \mathrm{~cm}
$$

$$
P_{d m}=83 \%, L_{d m}=16 \mathrm{~cm}
$$

$P_{\text {exm }}=91 \%, L_{\text {exm }}=6 \mathrm{~cm}$

There are many passages through a crystal in collimation and extraction process they increase deflection efficiency

Collimation, extraction efficiency has maximum $P_{\text {exm }}$ at smaller length $L_{\text {exm }}$

Simulation of beam halo extraction

Halo is generated by the amplitude increase of betaron oscillations

$$
P\left(\Delta x_{m}\right)=\exp \left(-\Delta x_{m} / \lambda\right),
$$

Two points along the ring were considered:

- BC - crystal
- SCOL - collimator-absorber

$$
\beta_{x}=500 \mathrm{~m} \text { and } \Delta \mu_{\mathrm{x}}=0.25
$$

Distances from the orbit $X_{B C}=6 \sigma_{x}$ and $X_{S C O L}=7 \sigma_{x}$

Two linear 6-D transfer matrices $M(6,6)$ were used to transport particles between

$$
\begin{aligned}
& \mathrm{BC} \rightarrow \mathrm{SCOL} \\
& \mathrm{SCOL} \rightarrow \mathrm{BC}
\end{aligned}
$$

Dependence of extraction efficiency on crystal orientation

Goniometer should has a step smaller than $1 \mu \mathrm{rad}$

Observation of volume reflection during crystal orientation

Beam losses observed by BLMs are smaller for VR crystal orientations

VR exists in wide angular range determined by bend angle

Observation of small losses in VR region considerably simplifies finding of crystal channeling orientation

Distribution of deflected halo particles at collimator-absorber

Channeling peak is very narrow, its position is determined by beta-function β_{x} Here, for $\beta_{\mathrm{x}}=500 \mathrm{~m}$ and $\alpha=100 \mu \mathrm{rad} \rightarrow X_{\mathrm{m}}=50 \mathrm{~mm}$

Dependence of extraction efficiency on particle energy

For deflection angle $\alpha=50$ rad - angular scans for optimal crystal length L_{m}
0.45 TeV

7 TeV

$$
\begin{aligned}
& P_{\text {exm }}=97.5 \%, \\
& L_{\text {exm }}=0.03 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{exm}}=95 \%, \\
\mathrm{~L}_{\mathrm{exm}}=0.4 \mathrm{~cm}
\end{gathered}
$$

50 TeV

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{exm}}=94 \%, \\
& \mathrm{~L}_{\mathrm{exm}}=3 \mathrm{~cm}
\end{aligned}
$$

Dependencies are similar when angles and crystal radii are measured by relative units, θ_{0} / θ_{c} and R / R_{c}

Maximal efficiency and scan width decreases because of nuclear losses increase

To have both halo collimation and extraction:

- Collimator-absorber straight before Lambertson magnet to absorb tail of deflected particles;
- SCOL horizontal size is a few cm , its vertical size should be sufficient to cool it;
- Channeled particles are extracted passing through passive Lambertson magnet aperture.

SUMMARY

- The use of Si crystal for 50 TeV proton beam deflection is considered; conceptual scheme of the particle extraction from the ring is presented; it is suggested to produce a horisontal dogleg with the Lambertson magnet (LM) in a straight section of the collider ring. In this case the deflection angle of about 100 urad or even smaller may be sufficient for the collider beam halo extraction.
- The critical bend radius Rc of the (110) silicon channels for channeling of 50 $\mathrm{TeV} / \mathrm{c}$ protons is about 85 m ; the crystal bend radius should be $5 . . .10$ Rc (the maximal extraction efficiency); the crystal length should be $4 \ldots 8 \mathrm{~cm}$ to obtain the required deflection of 100μ rad for channeled particles.
- The extraction efficiency of the collider beam halo can reach to about 90%. The extraction of a natural halo provides both the collider beam collimation and the external beam of 50 TeV protons for experiments at fixed targets.

THANK YOU

FOR YOUR ATTENTION

