Multiple scattering by crystal nuclei and electrons \rightarrow particle dechanneling
In short crystals dechanneling occurs only for particles with large amplitudes in channels mainly due to scattering by nuclei

MS angle for channeled particles depends on their position in channels

$$
\frac{\Delta \bar{\theta}^{2}}{\Delta z}(x)=P(x) \frac{\Delta \bar{\theta}^{2}}{\Delta z}{ }_{R}
$$

$P(x)$ - local density of nuclei in channel
MS distribution is Gaussian in first approximation
One of the first estimate of MS angle was given by Rossi

$$
\frac{\Delta \bar{\theta}^{2}}{\Delta z}=\left(\frac{E_{s}}{p v}\right)^{2} \frac{1}{L_{R}} \quad, \quad E_{s}=21 \mathrm{MeV}
$$

PDG suggests fit of Moliere distribution for projected angle

$$
\theta_{o}=\frac{13.6 \mathrm{MeV}}{p v} \sqrt{L / L_{R}}\left(1+0.038 \ln \left(L / L_{R}\right)\right)
$$

Simulation of channeling in bent crystals
In our model CRYD (Crystal deflector) particle trajectories in BC are found by numeric solution of motion equation in effective planar potential

$$
U_{e f f}(x, R)=U(x)+\frac{p v}{R} x
$$

Moliere approach for atomic potential is used

$$
V(r)=\frac{Z e^{2}}{r} \sum_{i=1}^{3} \alpha_{i} \exp \left(-\beta_{i} r / a\right)
$$

It gives analytical form for planar potential $\mathrm{U}(\mathrm{x})$. Electron density $\rho(\mathrm{x})$ derives from
Poisson equation. They are averaged by the thermal vibrations of atoms
Change of transverse velocity of a particle due to MS is calculated after the passage in effective potential a small distance $\Delta z \ll \lambda$

Rossi expression are used for MS by crystal nuclei

Experimental results obtained with SPS CERN beams of protons have been compared with simulation by this model in many papers

Agreement was sufficiently good

About multiple scattering of high energy protons in crystal deflectors
by A.M. Taratin and W. Scandale

Purposes:

1. Better estimation for Gaussian part of MS - $\frac{\Delta \bar{\theta}^{2}}{\Delta z}{ }_{R}$
2. Suggestion of a fast generator for the whole distribution of multiple scattering including its tail

Methods:

1. Simulation of particle trajectories in binary collision model for amorphous crystal orientation
2. Straight simulation of MS as the sequences of random collisions with atoms Impact paramters are uniformly distributed on the symmetry cell for a given crystallography direction

Simulation of MS in binary collision model (BCOL)

Entrance points are randomly and uniformly distributed on the symmetry cell Beam direction $\left(\theta_{0}, \varphi_{0}\right)$ is far from $<111>\mathrm{Si}$ axis and main crystal planes

Scattering by the atom with Moliere potential in momentum approximation

$$
\theta(r)=\frac{2 Z e^{2}}{p v a} \sum_{i=1}^{3} \alpha_{i} \beta_{i} K_{1}\left(\beta_{i} r / a\right)
$$

$\theta_{0}=10 \mathrm{mrad}, \varphi_{\mathrm{o}}=45^{\circ}$ is amorphous orientation for $400 \mathrm{GeV} / \mathrm{c}$ protons

Some illustrations of BCOL results for orientations close to <111> axis

BCOL results for amorphous orientations in <111>Si

$$
\text { For } \theta_{0}=10 \mathrm{mrad} \text { and } \varphi_{0}=45^{\circ}
$$

Gaussian fit
BCOL distribution $\rightarrow \sigma_{s}=4.56 \mu \mathrm{rad}$
Moliere distribution $\rightarrow \sigma_{m}=3.83 \mu \mathrm{rad}$

With taking into account MS by the crystal electrons $\rightarrow \sigma_{s}=4.72 \mu \mathrm{rad}$ From our experimental data $\rightarrow \sigma_{e x}=4.6 \div 4.9 \mu \mathrm{rad}$

PDG for RMS deflection $\rightarrow \theta_{0}=4.17 \mu \mathrm{rad}$

Planar potential model CRYD with using BCOL value for σ_{s}

Mean square deflection per unit length : $\Delta \bar{\theta}^{2} / \Delta z_{R}=\sigma_{s}^{2} / L$
Deflection angle distribution of $400 \mathrm{GeV} / \mathrm{c}$ protons For channeling in (110) Si , the bend angle $\alpha=189 \mu \mathrm{rad}$

Experiment at the SPS CERN CRYD simulation

Channeling efficiency: 77\% (ex) and 80\% (sim)
Dechanneled fraction : 6.4\% (ex) and 5.9\% (sim)

Straight simulation of multiple scattering in Si crystal

MS for a particle is the sequence of single scatterings with atoms
Impact parameters in scatterings are randomly and uniformly distributed on the crystal symmetry cell for a given direction

<100> Si cell

Number of scatterings along L

$$
\mathrm{N}_{\mathrm{L}}=\mathrm{L} / \mathrm{d}
$$

d - interatomic distance along S

Resulted X-deflection in N scatterings is the sum

$$
\begin{gathered}
\theta_{x}(N)=\sum_{n=1}^{N_{L}} \theta\left(r_{n}\right) x_{n} / r_{n}, \\
r_{n}=\left(x_{n}^{2}+y_{n}^{2}\right)^{1 / 2} \quad, \quad N_{L}=L / d_{a},
\end{gathered}
$$

MS model for $450 \mathrm{GeV} / \mathrm{c}$ protons in <111> Si

The distribution tails are non-Gaussian Their value and length depend on the crystal length

Dependence of MS parameters on the crystal length

Linearity of σ^{2} is improved for large length of a target

Tail fraction of MS distribution is considerably larger than for Gaussian (1.24\%) Besides MS tail is considerably longer

MS is the same for different crystal orientations

Mean square deflection in a single collision is inversely proportional to collision area

$$
\mathrm{MSD}_{1} \sim 1 / \mathrm{S}
$$

But collision area $S \sim 1 / d \rightarrow M S D_{1} \sim d$

$$
\text { Number of collisions } \mathrm{N}_{\mathrm{L}} \sim 1 / \mathrm{d} \text { and } \mathrm{MSD}_{1} \sim \mathrm{~d}
$$

Therefore, multiple scattering does not depend on d, it is the same for any direction

$$
\mathrm{MSD}_{\mathrm{N}}=\mathrm{N}^{*} \mathrm{MSD}_{1} \neq \mathrm{f}(\mathrm{~d})
$$

Generator of MS for 4 mm long Si crystal

Non-Gaussian tail for $\theta_{x}>2.2 \sigma$ is well fitted by a single exponent

MS generator is composed by two functions :

$$
\begin{gathered}
\text { for } \theta_{\mathrm{x}}<2.2 \sigma, \quad f_{1}\left(\theta_{x}\right)=a \exp \left(-\theta_{x}^{2} / 2 \sigma^{2}\right) \\
\text { for } \theta_{x}>2.2 \sigma, \quad f_{2}\left(\theta_{x}\right)=\exp \left(b-c \theta_{x}\right)
\end{gathered}
$$

Conclusions

1. RMS deflection of protons due to MS in Si crystal for its amorphous orientation σ_{s} obtained by BCOL simulation is in good agreement with our experiment and 15% larger than from Moliere theory
2. Accuracy of CRYD simulation in Gaussian approach for MS with σ_{s} from BCOL is better than 5% for channeling efficiency and about 10% for dechanneled fraction
3. Straight simulation of MS as the sequences of random collisions with atoms gives RMS deflection close to the value obtained by BCOL
4. Collision number is different for different orientations at the same crystal length However, MS is the same
5. Fast generator of multiple scattering was realized for AM crystal orientations

CRYD model test for Volume Reflection orientation

Experiment on nuclear probability measurement at the SPS CERN

CRYD model results for STF45 crystal

Note: simulation performed with Gaussian incident beam

Experimental value presented with torsion correction for crystal Therefore, angular distribution of considered beam fraction is not Gaussian

Channeling efficiency with angular cut $\pm 10 \mu \mathrm{rad}: 54 \%$ (ex) and 58.4\% (sim) with angular cut ± 5 rad: $68.9 \% \%$ (ex) and 70.7% (sim)

Dechanneling length with angular cut $\pm 10 \mu \mathrm{rad}: 1.28 \mathrm{~mm}$ (ex) and 1.3 mm (sim) with angular cut $\pm 5 \mu \mathrm{rad}: 1.41 \mathrm{~mm}$ (ex) and 1.42 mm (sim)

Volume reflection angle : $14.03 \mu \mathrm{rad}(\mathrm{ex})$ and $14.8 \mu \mathrm{rad}(\operatorname{sim})$ RMS of VR deflection angle : $8.03 \mu \mathrm{rad}(\mathrm{ex})$ and $6.6 \mu \mathrm{rad}(\operatorname{sim})$

RMS of VR outgoing angle :
$8.3 \mu \mathrm{rad}(\mathrm{sim})$

