

THE FEATURES OF TRANSITION AND CHERENKOV RADIATION OF MULTI-CHARGED IONS

V.S. Malyshevsky, I.A. Ivanova

Southern Federal University, 344090, Rostov-on-Don, Russia E-mail address: <u>vsmalyshevsky@sfedu.ru</u>

Nobel Prize Laureates. Discoverers of the Cherenkov and Transition radiation

I. Tamm

I. Frank

P. Cherenkov

V. Ginsburg

Radiation emitted by heavy multiply charged ions in the amorphous targets

Bremsstrahlung, Transition Radiation, Cherenkov Radiation

The main problems:

For heavy multiply charged ions we have to take into account the stopping power and charge exchange with the target.

In this report:

- Short review of charge exchange effects on the Cherenkov Radiation.
- Some expected effects of charge exchange in Transition Radiation.

When heavy ions penetrate into the target, the ion-atom collisions cause fluctuations of the projectile charge due to electrons loss or capture.

The radiation of a time-varying charge moving in a medium with a constant speed

Amatuni A.C., Garibyn G.M., Elbakyan S.S. Proceedings of the Academy of Sciences of the Armenian SSR. 1963. T. XVI. №6. C. 101-112.

> 20340.400 000 9050003000600 04096000050 560640900 НЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

> Зуфуш-бырьбыш. qhunnplaiblibr XVI, № 6, 1963 Физико-математические изуки

ТЕОРЕТИЧЕСКАЯ ФИЗНКА

А. Ц. Аматуни, Г. М. Гарибян, С. С. Элбакян

Излучение переменного во времени заряда, движущегося в среде с постоянной скоростью

 Пусть заряд движется с постоянной скоростью в среде и величина его меняется во времени.

Полный заряд во всем пространстве остается при этом постоянным, и, говоря о переменном во времени заряде, мы имеем в виду, что часть заряда выбывает из состояния движения и остается в среде. Примером такой ситуации может служить образование и дальнейшее исчезновение избытка электронов в электронно-фотонном ливне [1]; в качестве другого примера укажем на движущиеся в плазме электронные сгустки с зарядом переменной величины.

The correlation between various charge state values can arise in the Stopping Power, Bremsstrahlung, Transition and Cherenkov radiation

AUTOCORRELATION FUNCTION:

$$\left\langle Z(t)Z(t')\right\rangle = Z_{eq}^2 + \left\langle \xi(t)\xi(t')\right\rangle \quad \left\langle \xi(t)\xi(t')\right\rangle = \Lambda^2 \exp(-\Gamma|t-t'|)$$

LONGITUDINAL WAVES :

Z.I. Miskovic, S.G Davison., F.O Goodman., W.K. Liu Phys. Rev. 1999, B60, 14478-1483.

TRANSVERSE WAVES (HUYGENS PRINCIPLE**):** V.S. Malyshevsky. Physics Letters, A372 (2008) 2133–2136

Correlation effects The threshold condition is satisfied

V.S. Malyshevsky. Physics Letters, A372 (2008) 2133–2136

A single electron capture (loss)

V.S. Malyshevsky. Technical Physics Letters, 2014, Vol. 40, No. 4, pp. 320–322.

$$v < c_{p} \qquad \frac{d^{2}W}{d\omega d\Omega} = \frac{e^{2}v^{2}\sqrt{\varepsilon'(\omega)}\sin^{2}\theta}{(2\pi)^{2}} \frac{1}{(1-v\sqrt{\varepsilon'(\omega)}\cos\theta)^{2}}$$
$$v > c_{p} \qquad \frac{1}{L}\frac{d^{2}W}{d\omega d\Omega} = \frac{\omega^{2}ve^{2}\sqrt{\varepsilon'(\omega)}\sin^{2}\theta}{2\pi} (Z_{1}-1/2)^{2}\delta(\omega-\mathbf{kv})$$
$$\mathbf{W} = \frac{1}{L}\frac{d^{2}W}{d\omega d\Omega} = \frac{\omega^{2}ve^{2}\sqrt{\varepsilon'(\omega)}\sin^{2}\theta}{2\pi} (Z_{1}-1/2)^{2}\delta(\omega-\mathbf{kv})$$
$$\mathbf{W} = \frac{1}{L}\frac{d^{2}W}{d\omega d\Omega} = \frac{U^{2}ve^{2}\sqrt{\varepsilon'(\omega)}\sin^{2}\theta}{2\pi} (Z_{1}-1/2)^{2}\delta(\omega-\mathbf{kv})$$

Channeling-2014

A single electron capture (loss)

J. Ruzicka et al. Vacuum 63 (2001) 591-595

The threshold condition is not satisfied

Formulation of the problem

Basic approximation

$$L_{coh} >> L_{eq}$$

Maxwell's equations in the first and second media

$$\Delta \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial^2 t} = -\frac{4\pi}{c} Z_1 e \mathbf{v} \delta(\mathbf{r} - \mathbf{v}t), \qquad \Delta \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial^2 t} = -4\pi Z_1 e \delta(\mathbf{r} - \mathbf{v}t).$$

$$\Delta \mathbf{A} - \frac{\varepsilon}{c^2} \frac{\partial^2 \mathbf{A}}{\partial^2 t} = -\frac{4\pi}{c} Z_2 e \mathbf{v} \delta(\mathbf{r} - \mathbf{v}t), \qquad \Delta \varphi - \frac{\varepsilon}{c^2} \frac{\partial^2 \varphi}{\partial^2 t} = -\frac{4\pi}{\varepsilon} Z_2 e \delta(\mathbf{r} - \mathbf{v}t).$$

Fields are found from the condition of continuity of normal and tangential components

Spectral- angular density

If $Z_1 = Z_2$ we obtain the well-known Ginsburg – Frank formulas

Spectral- angular density in the special cases

If $Z_1 = 1$, $Z_2 = 0$, $\varepsilon \rightarrow \infty$ we obtain the backward Transition Radiation from metal surface:

$$\frac{d^2 W_1}{d\omega d\Omega'} = \frac{e^2 \sin^2 \vartheta'}{\pi^2 c} \frac{\beta^2}{\left(1 - \beta^2 \cos^2 \vartheta'\right)^2}$$

If $Z_1 = 0$, $Z_2 = 1$, $\varepsilon = 1$ we obtain the radiation of the electron which starts suddenly:

$$\frac{d^2 W_{1,2}}{d\omega d\Omega} = \frac{e^2 \sin^2 \vartheta}{4\pi^2 c} \frac{\beta^2}{\left(1 - \beta \cos \vartheta\right)^2}.$$

Transition radiation (some calculations) Forward radiation in the vacuum ultraviolet

Transition radiation (some calculations) Backward radiation in the optical range

Thank you for your attention !