

N

Advanced Studies on the PolyCO Optics use at XLab-Frascati

dr. Dariush Hampai

Channeling 2014 Capri, 7th October 2014

- Prof. S.B. Dabagov (Resp.)
- Dr. D. Hampai
- Dr. G. Cappuccio
- Dr. A. Liedl
- Dr. C. Polese
- Ing. F. Lucibello
- Dr. A. Marcelli

Detectors

J

Π

INFN - ENEA - CERN - Univ. Tomsk

X-ray Spectroscopy - X-ray Imaging

INFN - Diamond Light Source - ENEA -University of Rome "Sapienza" - CNR -University of Bicocca - University of Florence University of Minsk - Lebedev Physical Institute

Novel Source - Nanoray (Eur. Proj.) Labor, University of Rome "Sapienza" University of Rome "Tor Vergata"

HYPATIA

Main Activity at XLab - Frascati

X-ray Optics - Polycapillary and Compound Refractive Optics

<u>Material Analisys</u> - The X-ray Spectroscopy:

- X-ray Fluorescence (normal and total reflection modes)
- X-ray diffraction
- X-ray Imaging
- X-ray Tomography amd micro-Tomography

Diagnostic Applications

• X-ray Imaging for large object with high spatial resolution

<u>Crystal Characterization for hadron beam collimation through crystal channeling</u> Novel technologies and experimental setup

- Prototype for XRF TXRF and X-ray Imaging
- X-ray tube based on Carbon Nanotube Cold Cathode

Overview on X-ray optics

physical effect	types of optics using
reflection	(crystal) mirror opt
diffraction	zone plates
refraction	compound refractive
absorption	windows; filters; pir
INFN)-'frascati

0000000

đ

N

U

INFN

Istituto Naziona di Fisica Nuclea

	Re	Diffractive	Refractive			
Kirkpatrick-Baez		Capillaries		Waveguides	Zone Plates	Refractive Lens
mirrors	multilayers	multi-capill.	mono-capill.			
Kirkpatrik Baez, 1948	Undewood Barbee, 1986	Kreger, 1948	Balaic, 1995	Feng et al., 1993	Baez, 1952	Snigirev et al., 1996
			\rightarrow			
< 20 keV < 100 keV < 30 keV		< 20 keV	< 30 keV	<1 MeV		
white beam	beam 10 ⁻² white beam		10-3	10-3	10-3	
25 nm	41 nm	50 nm	250 nm	40x25 nm ²	30 nm	50 nm
4. Minura et al.	0. Hignette et al.	D.H. Bilderback et al.	A. Snigerev et al.	A. Jarre et al.	H.C. Kang et al.	C.G. Schroer et al.

Reflective					Diffractive	Refractive	
	Kirkpatrick-Baez		Capillaries		Waveguides	Zone Plates	Refractive Lens
	mirrors	multilayers	multi-capill.	mono-capill.			
	Kirkpatrik Baez, 1948	Undewood Barbee, 1986	Kreger, 1948	Balaic, 1995	Feng et al., 1993	Baez, 1952	Snigirev et al., 1996
				\rightarrow		S a b P	
Ε	< 20 keV	< 100 keV	< 30 keV		< 20 keV	< 30 keV	< 1 MeV
ΔΕ/Ε	white beam	10-2	white beam		10 ⁻³	10-3	10-3
Δx	25 nm	41 nm	50 nm	250 nm	40x25 nm ²	30 nm	50 nm
ref.	H. Minura et al.	O. Hignette et al.	D.H. Bilderback et al.	A. Snigerev et al.	A. Jarre et al.	H.C. Kang et al.	C.G. Schroer et al.

INFN

V manoox

Ň

ס

000000

Kirkpatrick-Baez-optics [P. Kirkpatrick, A.V. Baez, 1948] consist of two mirrors. The surface of the first mirror is e.g. aligned horizontally, the second mirror is aligned vertically. In order to achive a common focal point, both mirrors have to be curved elliptically in a way, that leads go the horizontal focus line of the first mirror and the vertical focus line of the second mirror coinciding in the same plane. KB-mirrors are expensive (up to several 100 k \in).

Some example:

AXO Dresden – Radiation Cu Ka < 100 μ m and focal length 90 mm Agilent SuperNova - Beam size: 140 microns

OPTICS APERTURE

Reflective Optics - Wolter Optics

Type I Wolter optics, nowadays, are used for telescopes, and they consist of an elliptical or parabolic mirror followed by a hyperbolic mirror. The mirrors mostly are tubular, rotationally symmetric TER-mirrors. Wolter optics roughly fulfill the above mentioned Abbé criterion and therefore can be used as imaging optics. As the light is only reflected under grazing incidence, a single tubular mirror set does not catch much of the incoming light.

Π

Wolter Optics Type I

Hyperbola F2 F1

Wolter Optics Type II

Wolter optics are used in X-ray telescopes in astrophysics like the orbiting X-ray observatories Chandra and XMM-Newton, as well as in the Swift Gamma-Ray Burst Mission.

X-ray Telescopes based on Wolter Optics

Chandra and XMM Newton

- Chandra (NASA) Launch: July 1999 Orbit: 64 hours - Two Transmission Grating
- Spectrometers

di Fisica Nu

- Angular resolution ~ 0.5"

- XMM-Newton (ESA) Launch: December 1999 Orbit: 48 hours
- Reflaction Grating Spectrometer
- angular resolution ~ 15"

Mirror Characteristic	Chandra	XMM	
aperture diameter	1.2 m	70 cm one module	
mirrors	4 nested	58 nested	
grazing angles (arcmin)	27-51	18-40	
focal length (m)	10	7.5	
mirror coating	Ir	Au	
highest energy focused (keV)	10	10	
on axis resolution	0.5	20	
Mirror Weight (kg)	several hundred kilograms	425	
roughness	1.95 - 3.58 Å	3.5 - 6 Å	
HYPATIA		Channel x-ray technologies	

Chandra & XMM-Newton vs. PolyCO

Channel x-ray technologies

In the soft x-ray range FZPs can reach a resolution down to below 20 nm [W. Chao et al. 2005], and sub-100 nm values are routinely achieved. The efficient focusing of hard X-rays is more difficult, since in order to obtain acceptable diffraction efficiencies:

1) the zone plate structures should be made from heavy materials; 2) the required height of the structures needs to be a micron or more. This is the reason why the high resolution potential of FZPs could not be exploited in the hard X-ray regime [B. Nöhammer et al., 2005].

XRadia - True spatial resolution <700 nm <u>High resolution down to 50 nm is maintained for imaging of samples within in situ devices</u> <u>Switchable field-of-view ranging from 15 to 60 µm</u>

Diffractive Optics - Zone Plates

Reflective Optics - (mono/poly) Capillary Optics

Reflective Optics - (mono/poly) Capillary Optics

- High Resolution Imaging \bullet
- μCΤ \bullet
- X-ray Optics Characterization
- **Detector Characterization**
- Study on Novel Sources

Π

tituto Naz

di Fisica Nucle

 μ XRF (2D and 3D mapping)

TXRF

LABORATORI NAZIONALI DI FRASCAT

rascati

- **Detector Characterization**
- in future: High Resolution Imaging and μCT

Analysis

Non-destructive

Π

tituto Naz

di Fisica Nucle

Middle Age Earthenware Jar from XVI Tuscan Furnace μXRF Mapping

- 21×7 steps (in low resolution)
- 66 x 35 steps (in high resolution)
- $50 \times 50 \ \mu m^2$ spatial resolution \bullet
- 35 kV / 750 µA
- $T_{acq} = 20 / step$

RXR: a cultural heritage sample

Pb

3D Surface

22 11 44

hanne

μCΤ

V_mm00

σ

INFN

- 720 images for 360 degree
- 120 ms / image \bullet
- 35 kV / 700 µA •
- about 600 s of total exposition
- 15 μ m Resolution

N

U

Π

stituto Nazio

di Fisica Nuclea

Xena - Density Fuel Jet Maps by μCT

Density [kg/m3]

μCΤ

- 100 images for degree for 360 degree
- 2 ms / image
- 35 kV / 700 µA
- 16,7 μ m Resolution

XENA - High Resolution Imaging with LiF

Geological samples

U

On Left: doubly-polished (010) section of cordierite **On Right**: doubly-polished fragment of a magnesium-hastingsite amphibole

BORATORI NAZIONALI

-Frasci

- a very short review on X-ray Optics
- Advantage and disadvantage on PolyCO
- Our Results on

U

- XRF (2D mapping, 3D mapping, TXRF)
- μ CT and High Resolution Imaging \bullet

J

tituto Nazi

di Fisica Nucle

Vitruvio XLOS

