

IFAE 2014 - Incontri di Fisica delle Alte Energie

9-11 April 2014 Auditorium del Parco "Renzo Piano", Parco del Castello Cinquecentesco, L'Aquila - Gran Sasso Science Institute, Viale Francesco Crispi 7, L'Aquila - Laboratori Nazionali del Gran

Sasso, via Giovanni Acitelli 22, Assergi (AQ)

Europe/Rome timezone

BSM Higgs searches at High Mass

G. Zurzolo ("Federico II" University and INFN, Napoli)

Outlines

- Introduction
- Theoretical interpretation
- Experimental analysis
- Conclusions

Introduction

- Discovery of the Higgs Boson at 125 GeV
- Theory does not exclude the existence of additional singlets or duplets of Higgs boson
- Important to continue searching for Heavy Higgs Bosons
- Focus on two BSM models:
 - 2 Higgs Doublet Model (2HDM)
 - Additional EW singlet

h(125) + Real EW Singlet Model

- Heavy real singlet with couplings rescaled from SM signal
- Scan in **two parameters** for each m_H and set upper limit on $\sigma \times BR$
 - H_{new} couplings: k' (constrained by $(k')^2 + k^2 = 1$)
 - BR_{new}: new decay modes, e.g. to additional Higgses

$$\mu' = \frac{\sigma' \times \mathrm{BR'}}{\sigma_{\mathrm{SM}} \times \mathrm{BR_{SM}}} = \kappa'^{2} (1 - \mathrm{BR_{new}})$$

$$\sigma' = \kappa'^{2} \sigma_{\mathrm{SM}}$$

$$\Gamma' = \frac{\kappa'^{2}}{1 - \mathrm{BR_{new}}} \Gamma_{\mathrm{SM}}$$

$$\mathrm{BR'} = (1 - \mathrm{BR_{new}}) \mathrm{BR_{SM}}$$

• Some constraints already from experimental measurement of signal strength μ of the discovered Higgs boson h(125)

2HDM

- Two identical complex scalar field SU(2)
- 5 different physical bosons: **h** (the 125 GeV boson), **H** (heavy higgs), **A** (pseudoscalar) and **H**⁺/**H**⁻ (charged higgs)

$$\begin{split} V(\Phi_{1},\Phi_{2}) &= m_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} + (m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c}) \\ &+ \frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}\lambda_{5}[(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \text{h.c}] \end{split}$$

Coupling	Type I	Type II
$\xi_h^{ ext{v}}$	$\sin(\beta - \alpha)$	$\sin(\beta-lpha)$
ξ^u_h	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin lpha/\sin eta$
$\xi_H^{ m v}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$

- Interested in the CP-conserving case with parameters:
 - 3 masses: **m**_h, **m**_H, **m**_{H+-}, **m**_A
 - 2 angles: α ([h, H] mixing angle) and β (tan $\beta = v_2/v_1$)
 - 1 potential parameter: (m₁₂)²
- Each parameter set gives specific prediction on xsec and BR for h/H

Constraints from SM Higgs coupling measurements

[ATLAS-CONF-2014-010]

(a) Type I

- Constraints from:
 - decay rates of the h(125) in the h $\rightarrow \gamma \gamma$, h $\rightarrow ZZ^* \rightarrow 4l$, h $\rightarrow WW^* \rightarrow lvlv$, h $\rightarrow \tau \tau$, h \rightarrow bb channels
 - measured mass in the h $\rightarrow \gamma \gamma$, h $\rightarrow ZZ^* \rightarrow 4l$ decay channels
- Integrated luminosity: 4.7 fb⁻¹ @ 7 TeV and 20.8 fb⁻¹ @ 8 TeV

$H \rightarrow ZZ \rightarrow 4$

- Sensitive across a wide range of m_H
- High S/B and very sharp resolution
- Statistical limitation due to small branching ratio
- The goal is to perform searches of multiple Higgs bosons using the analysis used to measure the properties of 125 GeV Higgs

[ATLAS-CONF-2013-013]

• The observed σ/σ_{SM} value is ~ 0.3 for ggF and ~ 1.5 for VBF+VH @ 500 GeV

$H \rightarrow ZZ \rightarrow IIqq$

- Favored w.r.t. the 4l channel by the higher branching ratio
- Very difficult: huge irreducible background (mostly Z+jets and Top)
- Many improvements w.r.t. published 2011 results (4.7 fb⁻¹ @ 7 TeV)

• Event selection:

- Two high-p_T, isolated, opposite charge leptons
- At least two high-p_T jets
- Exclusive event categories: 0/1/2 b-tags
- Z+jets background normalized to control regions

Z+jets and Top CRs

• **Z+jets CR:** m_{jj} SBs (50 < m_{jj} < 70 GeV or 105 < m_{jj} < 150 GeV)

• 2 Top CRs:

• m_{ll} SBs (40 < m_{ll} < 76 GeV or m_{ll} > 106 GeV; E_{T}^{miss} > 60 GeV for 1 b-tag)

• e μ CRs (opposite charge only; $E_T^{miss} > 60$ GeV for 1 b-tag)

H -> WW -> IVV

- Two isolated, opposite sign leptons and E_T^{miss}
- Only leptons with different flavor used

[ATLAS-CONF-2013-067]

- Event categories: 0-jet, 1-jet, ≥ 2-jets (VBF)
- Top and WW backgrounds normalized to control regions
- Selection optimized to be more sensitive to higher m_H values
- The observed σ/σ_{SM} value is ~ 0.7 for ggF @ 500 GeV

Perspectives for HL-LHC

- Expected exclusion of a SM-like Higgs boson assuming an integrated luminosity of **300 and 3000 fb**⁻¹ @ **14 TeV** in the 4l channel is about **4 40 times** @ **300 fb**⁻¹ (10 150 @ 3000 fb⁻¹) better than that expected for a SM-like Higgs Boson
- Discovery potential with 300 and 3000 fb⁻¹ @ 14 TeV for a type-II 2HDM for values of $\tan \beta = 1$ and 3 has been evaluated for the A \rightarrow Zh production

[ATL-PHYS-PUB-2013-016]

Conclusions

- Heavy Higgs searches are important to explore BSM models (2HDM, EWS)
- The goal is to perform searches of multiple Higgs bosons by scanning over m_H , $tan\beta$ and $cos(\beta \alpha)$ planes
- Run I data analysis still on-going: inclusion of latest analysis developments, inclusion of interference at very high mass values, final interpretations of results
- Aim for a combination paper of H → ZZ and H → WW production modes
- Perspectives for Run II show a very good potential for BSM Higgs searches

And thanks for your attention!

Backup

2HDM Benchmark

Strategy compatible with current knowledge on h(125)

- Light Higgs (h) is a 125 GeV CP-even particle
- m_A and m_{H+-} large, equal to m_H
- scan over m_H , $cos(\beta \alpha)$ and $tan\beta$ planes
 - h compatible with SM rates \rightarrow restrict $\cos(\beta \alpha) \sim 0$
 - Explore both positive and negative quadrants
- Fix $(m_{12})^2$ parameter
 - $(m_{12})^2 = 0$ (exact Z_2 symmetry)
 - $(m_{12})^2 = f(m_A, \tan\beta)$ (softly broken Z_2 symmetry, e.g. MSSM)
- Apply to both Type I and II (no FCNC)

Datasets

- Muon/Egamma streams: 20.3 fb⁻¹ @ 8 TeV
- Signal: Powheg ggF and VBF
 - 200 1000 GeV range in 20 (50) GeV steps below (above) 600 GeV
 - Both narrow width approximation (NWA) and complex-pole scheme (CPS)
- Background MC:
 - Z/W + jets : Sherpa (ggF) and Alpgen+Pythia (VBF)
 - ttbar: Powheg
 - single top: Powheg (Wt/s-chan) + Acer (t-chan)
 - Diboson (ZZ/WZ/WW): Herwig
 - QCD multijet from data in the ee channel (negligible in $\mu\mu$):
 - loose++ lepton ID + reversed track isolation