IFAE 2014 - Incontri di Fisica delle Alte Energie 9-11 April 2014 Auditorium del Parco "Renzo Piano", Parco del Castello Cinquecentesco, L'Aquila - Gran Sasso Science Institute, Viale Francesco Crispi 7, L'Aquila - Laboratori Nazionali del Gran Sasso, via Giovanni Acitelli 22, Assergi (AQ) Europe/Rome timezone ### BSM Higgs searches at High Mass G. Zurzolo ("Federico II" University and INFN, Napoli) ## Outlines - Introduction - Theoretical interpretation - Experimental analysis - Conclusions ## Introduction - Discovery of the Higgs Boson at 125 GeV - Theory does not exclude the existence of additional singlets or duplets of Higgs boson - Important to continue searching for Heavy Higgs Bosons - Focus on two BSM models: - 2 Higgs Doublet Model (2HDM) - Additional EW singlet ## h(125) + Real EW Singlet Model - Heavy real singlet with couplings rescaled from SM signal - Scan in **two parameters** for each m_H and set upper limit on $\sigma \times BR$ - H_{new} couplings: k' (constrained by $(k')^2 + k^2 = 1$) - BR_{new}: new decay modes, e.g. to additional Higgses $$\mu' = \frac{\sigma' \times \mathrm{BR'}}{\sigma_{\mathrm{SM}} \times \mathrm{BR_{SM}}} = \kappa'^{2} (1 - \mathrm{BR_{new}})$$ $$\sigma' = \kappa'^{2} \sigma_{\mathrm{SM}}$$ $$\Gamma' = \frac{\kappa'^{2}}{1 - \mathrm{BR_{new}}} \Gamma_{\mathrm{SM}}$$ $$\mathrm{BR'} = (1 - \mathrm{BR_{new}}) \mathrm{BR_{SM}}$$ • Some constraints already from experimental measurement of signal strength μ of the discovered Higgs boson h(125) ## 2HDM - Two identical complex scalar field SU(2) - 5 different physical bosons: **h** (the 125 GeV boson), **H** (heavy higgs), **A** (pseudoscalar) and **H**⁺/**H**⁻ (charged higgs) $$\begin{split} V(\Phi_{1},\Phi_{2}) &= m_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} + (m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c}) \\ &+ \frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}\lambda_{5}[(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \text{h.c}] \end{split}$$ | Coupling | Type I | Type II | |-------------------|----------------------------|----------------------------| | $\xi_h^{ ext{v}}$ | $\sin(\beta - \alpha)$ | $\sin(\beta-lpha)$ | | ξ^u_h | $\cos \alpha / \sin \beta$ | $\cos \alpha / \sin \beta$ | | ξ_h^d | $\cos \alpha / \sin \beta$ | $-\sin lpha/\sin eta$ | | $\xi_H^{ m v}$ | $\cos(\beta - \alpha)$ | $\cos(\beta - \alpha)$ | | ξ^u_H | $\sin \alpha / \sin \beta$ | $\sin \alpha / \sin \beta$ | | ξ_H^d | $\sin \alpha / \sin \beta$ | $\cos \alpha / \cos \beta$ | - Interested in the CP-conserving case with parameters: - 3 masses: **m**_h, **m**_H, **m**_{H+-}, **m**_A - 2 angles: α ([h, H] mixing angle) and β (tan $\beta = v_2/v_1$) - 1 potential parameter: (m₁₂)² - Each parameter set gives specific prediction on xsec and BR for h/H # Constraints from SM Higgs coupling measurements #### [ATLAS-CONF-2014-010] (a) Type I - Constraints from: - decay rates of the h(125) in the h $\rightarrow \gamma \gamma$, h $\rightarrow ZZ^* \rightarrow 4l$, h $\rightarrow WW^* \rightarrow lvlv$, h $\rightarrow \tau \tau$, h \rightarrow bb channels - measured mass in the h $\rightarrow \gamma \gamma$, h $\rightarrow ZZ^* \rightarrow 4l$ decay channels - Integrated luminosity: 4.7 fb⁻¹ @ 7 TeV and 20.8 fb⁻¹ @ 8 TeV ## $H \rightarrow ZZ \rightarrow 4$ - Sensitive across a wide range of m_H - High S/B and very sharp resolution - Statistical limitation due to small branching ratio - The goal is to perform searches of multiple Higgs bosons using the analysis used to measure the properties of 125 GeV Higgs [ATLAS-CONF-2013-013] • The observed σ/σ_{SM} value is ~ 0.3 for ggF and ~ 1.5 for VBF+VH @ 500 GeV ## $H \rightarrow ZZ \rightarrow IIqq$ - Favored w.r.t. the 4l channel by the higher branching ratio - Very difficult: huge irreducible background (mostly Z+jets and Top) - Many improvements w.r.t. published 2011 results (4.7 fb⁻¹ @ 7 TeV) #### • Event selection: - Two high-p_T, isolated, opposite charge leptons - At least two high-p_T jets - Exclusive event categories: 0/1/2 b-tags - Z+jets background normalized to control regions ## Z+jets and Top CRs • **Z+jets CR:** m_{jj} SBs (50 < m_{jj} < 70 GeV or 105 < m_{jj} < 150 GeV) #### • 2 Top CRs: • m_{ll} SBs (40 < m_{ll} < 76 GeV or m_{ll} > 106 GeV; E_{T}^{miss} > 60 GeV for 1 b-tag) • e μ CRs (opposite charge only; $E_T^{miss} > 60$ GeV for 1 b-tag) ## H -> WW -> IVV - Two isolated, opposite sign leptons and E_T^{miss} - Only leptons with different flavor used [ATLAS-CONF-2013-067] - Event categories: 0-jet, 1-jet, ≥ 2-jets (VBF) - Top and WW backgrounds normalized to control regions - Selection optimized to be more sensitive to higher m_H values - The observed σ/σ_{SM} value is ~ 0.7 for ggF @ 500 GeV ## Perspectives for HL-LHC - Expected exclusion of a SM-like Higgs boson assuming an integrated luminosity of **300 and 3000 fb**⁻¹ @ **14 TeV** in the 4l channel is about **4 40 times** @ **300 fb**⁻¹ (10 150 @ 3000 fb⁻¹) better than that expected for a SM-like Higgs Boson - Discovery potential with 300 and 3000 fb⁻¹ @ 14 TeV for a type-II 2HDM for values of $\tan \beta = 1$ and 3 has been evaluated for the A \rightarrow Zh production [ATL-PHYS-PUB-2013-016] ## Conclusions - Heavy Higgs searches are important to explore BSM models (2HDM, EWS) - The goal is to perform searches of multiple Higgs bosons by scanning over m_H , $tan\beta$ and $cos(\beta \alpha)$ planes - Run I data analysis still on-going: inclusion of latest analysis developments, inclusion of interference at very high mass values, final interpretations of results - Aim for a combination paper of H → ZZ and H → WW production modes - Perspectives for Run II show a very good potential for BSM Higgs searches ### And thanks for your attention! ## Backup ### 2HDM Benchmark ### Strategy compatible with current knowledge on h(125) - Light Higgs (h) is a 125 GeV CP-even particle - m_A and m_{H+-} large, equal to m_H - scan over m_H , $cos(\beta \alpha)$ and $tan\beta$ planes - h compatible with SM rates \rightarrow restrict $\cos(\beta \alpha) \sim 0$ - Explore both positive and negative quadrants - Fix $(m_{12})^2$ parameter - $(m_{12})^2 = 0$ (exact Z_2 symmetry) - $(m_{12})^2 = f(m_A, \tan\beta)$ (softly broken Z_2 symmetry, e.g. MSSM) - Apply to both Type I and II (no FCNC) ### Datasets - Muon/Egamma streams: 20.3 fb⁻¹ @ 8 TeV - Signal: Powheg ggF and VBF - 200 1000 GeV range in 20 (50) GeV steps below (above) 600 GeV - Both narrow width approximation (NWA) and complex-pole scheme (CPS) - Background MC: - Z/W + jets : Sherpa (ggF) and Alpgen+Pythia (VBF) - ttbar: Powheg - single top: Powheg (Wt/s-chan) + Acer (t-chan) - Diboson (ZZ/WZ/WW): Herwig - QCD multijet from data in the ee channel (negligible in $\mu\mu$): - loose++ lepton ID + reversed track isolation