IFAE
 2014

 IFAE 2014 - Incontri di Fisica delle Alte Energie9-11 April 2014 Auditorium del Parco "Renzo Piano", Parco del Castello Cinquecentesco, L'Aquila - Gran Sasso Science Institute, Viale Francesco Crispi 7, L'Aquila - Laboratori Nazionali del Gran

BSM Higgs searches at High Mass

G. Zurzolo ("Federico II" University and INFN, Napoli)

Outlines

- Introduction
- Theoretical interpretation
- Experimental analysis
- Conclusions

Introduction

- Discovery of the Higgs Boson at 125 GeV
- Theory does not exclude the existence of additional singlets or duplets of Higgs boson
- Important to continue searching for Heavy Higgs Bosons
- Focus on two BSM models:
- 2 Higgs Doublet Model (2HDM)
- Additional EW singlet

h(125) + Real EW Singlet Model

- Heavy real singlet with couplings rescaled from SM signal
- Scan in two parameters for each m_{H} and set upper limit on $\sigma \times B R$
- $\mathrm{H}_{\text {new }}$ couplings: \mathbf{k}^{\prime} (constrained by $\left(\mathrm{k}^{\prime}\right)^{2}+\mathrm{k}^{2}=1$)
- $\mathbf{B R}_{\text {new: }}$: new decay modes, e.g. to additional Higgses

$$
\begin{aligned}
\mu^{\prime} & =\frac{\sigma^{\prime} \times \mathrm{BR}^{\prime}}{\sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}}=\kappa^{\prime 2}\left(1-\mathrm{BR}_{\mathrm{new}}\right) \\
\sigma^{\prime} & =\kappa^{\prime 2} \sigma_{\mathrm{SM}} \\
\Gamma^{\prime} & =\frac{\kappa^{\prime 2}}{1-\mathrm{BR}_{\mathrm{new}}} \Gamma_{\mathrm{SM}} \\
\mathrm{BR}^{\prime} & =\left(1-\mathrm{BR}_{\mathrm{new}}\right) \mathrm{BR}_{\mathrm{SM}}
\end{aligned}
$$

- Some constraints already from experimental measurement of signal strength μ of the discovered Higgs boson h(125)

2HDM

- Two identical complex scalar field $\operatorname{SU}(2)$
- 5 different physical bosons: h (the 125 GeV boson), H (heavy higgs), A (pseudoscalar) and $\mathrm{H}^{+} / \mathrm{H}^{-}$(charged higgs)

$$
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right) & =m_{1}^{2} \Phi_{1}^{\dagger} \phi_{1}+m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}+\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c }\right) \\
& +\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\Phi_{1}^{\dagger} \phi_{1}\right)\left(\Phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \phi_{2}\right)\left(\Phi_{2}^{\dagger} \phi_{1}\right)+\frac{1}{2} \lambda_{5}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\mathrm{h} . \mathrm{c}\right]
\end{aligned}
$$

Coupling	Type I	Type II
ξ_{n}^{h}	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$
ξ_{h}^{u}	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_{h}^{d}	$\cos \alpha / \sin \beta$	$-\sin \alpha / \sin \beta$
ξ_{H}^{H}	$\cos (\beta-\alpha)$	$\cos (\beta-\alpha)$
ξ_{H}	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ_{H}^{J}	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$

- Interested in the CP-conserving case with parameters:
- 3 masses: $\mathrm{m}_{\mathrm{h},} \mathrm{m}_{\mathrm{H},} \mathrm{m}_{\mathrm{H}+-,} \mathrm{m}_{\mathrm{A}}$
- 2 angles: $\alpha\left([\mathrm{h}, \mathrm{H}]\right.$ mixing angle) and $\beta\left(\tan \beta=\mathrm{v}_{2} / \mathrm{v}_{1}\right)$
- 1 potential parameter: $\left(m_{12}\right)^{2}$
- Each parameter set gives specific prediction on xsec and BR for h/H

Constraints from SM Higgs coupling measurements

[ATLAS-CONF-2014-010]

- Constraints from:

(a) Type I

(b) Type II
- decay rates of the $\mathrm{h}(125)$ in the $\mathrm{h} \rightarrow \gamma \gamma, \mathrm{h} \rightarrow \mathrm{ZZ}^{*} \rightarrow 41, \mathrm{~h} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{lvl}$, $\mathrm{h} \rightarrow \boldsymbol{\tau}, \mathrm{h} \rightarrow$ bb channels
- measured mass in the $\mathrm{h} \rightarrow \gamma \gamma, \mathrm{h} \rightarrow \mathrm{ZZ}^{*} \rightarrow 41$ decay channels
- Integrated luminosity: $4.7 \mathrm{fb}^{-1} @ 7 \mathrm{TeV}$ and $20.8 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$

$H \rightarrow Z Z \rightarrow 4 \mid$

- Sensitive across a wide range of m_{H}
- High S/B and very sharp resolution

[ATLAS-CONF-2013-013]

- Statistical limitation due to small branching ratio
- The goal is to perform searches of multiple Higgs bosons using the analysis used to measure the properties of 125 GeV Higgs
- The observed $\sigma / \sigma_{S M}$ value is ~ 0.3 for ggF and ~ 1.5 for VBF+VH @ 500 GeV

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow \| q \mathrm{q}$

- Favored w.r.t. the 41 channel by the higher branching ratio
- Very difficult: huge irreducible background (mostly Z+jets and Top)
- Many improvements w.r.t. published 2011 results ($4.7 \mathrm{fb}^{-1} @ 7 \mathrm{TeV}$)
[ATLAS-CONF-2012-017]
- Event selection:
- Two high- p_{T}, isolated, opposite charge leptons
- At least two high- p_{T} jets
- Exclusive event categories: 0/1/2 b-tags
- Z+jets background normalized to control regions

Z+jets and Top CRs

- Z+jets CR: $\mathrm{m}_{\mathrm{jj}} \mathrm{SBs}\left(50<\mathrm{m}_{\mathrm{jj}}<70 \mathrm{GeV}\right.$ or $\left.105<\mathrm{m}_{\mathrm{jj}}<150 \mathrm{GeV}\right)$

- 2 Top CRs:

- $\mathrm{m}_{\mathrm{ll}} \mathrm{SBs}\left(40<\mathrm{m}_{\| 1}<76 \mathrm{GeV}\right.$ or $\mathrm{m}_{\|}>106 \mathrm{GeV}$; $\mathrm{E}_{\mathrm{T}^{\text {miss }}}>60 \mathrm{GeV}$ for 1 b -tag)

$\mathrm{m}_{\mathrm{j}}[\mathrm{GeV}]$

$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

- Two isolated, opposite sign leptons and E_{T} miss
- Only leptons with different flavor used
- Event categories: 0-jet, 1 -jet, ≥ 2-jets (VBF)
[ATLAS-CONF-2013-067]
- Top and WW backgrounds normalized to control regions
- Selection optimized to be more sensitive to higher m_{H} values
- The observed $\sigma / \sigma_{\text {sm }}$ value is ~ 0.7 for $\mathrm{ggF} @ 500 \mathrm{GeV}$

Perspectives for HL-LHC

- Expected exclusion of a SM-like Higgs boson assuming an integrated luminosity of 300 and $3000 \mathrm{fb}^{-1} @ 14 \mathrm{TeV}$ in the 41 channel is about 4-40 times @ $300 \mathrm{fb}^{-1}$ (10-150 @ $3000 \mathrm{fb}^{-1}$) better than that expected for a SMlike Higgs Boson
- Discovery potential with 300 and $3000 \mathrm{fb}^{-1} @ 14 \mathrm{TeV}$ for a type-II 2HDM for values of $\tan \beta=1$ and 3 has been evaluated for the $\mathrm{A} \rightarrow$ Zh production

11
[ATL-PHYS-PUB-2013-016]

Conclusions

- Heavy Higgs searches are important to explore BSM models (2HDM, EWS)
- The goal is to perform searches of multiple Higgs bosons by scanning over $m_{H}, \tan \beta$ and $\cos (\beta-\alpha)$ planes
- Run I data analysis still on-going: inclusion of latest analysis developments, inclusion of interference at very high mass values, final interpretations of results
- Aim for a combination paper of $\mathrm{H} \rightarrow \mathrm{ZZ}$ and $\mathrm{H} \rightarrow$ WW production modes
- Perspectives for Run II show a very good potential for BSM Higgs searches

And thanks for your attention!

Backup

2HDM Benchmark

Strategy compatible with current knowledge on h(125)

- Light Higgs (h) is a 125 GeV CP-even particle
- m_{A} and $\mathrm{m}_{\mathrm{H}+-}$ large, equal to m_{H}
- scan over $m_{H}, \cos (\beta-\alpha)$ and $\tan \beta$ planes
- h compatible with SM rates \rightarrow restrict $\cos (\beta-\alpha) \sim 0$
- Explore both positive and negative quadrants
- Fix $\left(m_{12}\right)^{2}$ parameter
- $\left(m_{12}\right)^{2}=0\left(\right.$ exact Z_{2} symmetry)
- $\left(\mathrm{m}_{12}\right)^{2}=\mathrm{f}\left(\mathrm{m}_{\mathrm{A}}, \tan \beta\right)\left(\right.$ softly broken Z_{2} symmetry, e.g. MSSM)
- Apply to both Type I and II (no FCNC)

Datasets

- Muon/Egamma streams: $20.3 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$
- Signal: Powheg ggF and VBF
- $200-1000 \mathrm{GeV}$ range in 20 (50) GeV steps below (above) 600 GeV
- Both narrow width approximation (NWA) and complex-pole scheme (CPS)
- Background MC:
- Z/W + jets : Sherpa (ggF) and Alpgen+Pythia (VBF)
- ttbar: Powheg
- single top: Powheg (Wt/s-chan) + Acer (t-chan)
- Diboson (ZZ/WZ/WW): Herwig
- QCD multijet from data in the ee channel (negligible in $\mu \mu$):
- loose++ lepton ID + reversed track isolation

