Rassegna sulle ~ oscillazioni ~ di neutrino

IFAE, GSSI/LNGS 9 Aprile 2014

Andrea Longhin INFN LNF

90 cm

Premessa e contenuti

- Risultati recenti/interessanti nei canali di "appearance"

• $v_{\mu} \rightarrow v_{e} e v_{\mu} \rightarrow v_{\tau}$ con fasci di neutrini da acceleratori

+ interludio breve sulla "disappearance" $v_{\mu} \rightarrow v_{\mu}$

 Visto anche il limite di tempo mi sono concentrato su questi punti rinunciando a un'approccio piu' esaustivo

– E rincuorante notare che questa impostazione e' compatibile con la scelta di concentrarci su esperimenti con importanti contributi INFN (OPERA, ICARUS, T2K)!

Mescolamento dei v e oscillazioni

Il piu' recente grosso progresso e' stata la misura di θ_{13} , nel 2012. Poteva essere una "missione impossibile" invece ... ora e' l'angolo che conosciamo meglio. Apre la strada alla CP violation.

La ``lunga strada" verso l'appearance

- **Scomparsa** dei v_{μ} effetto "leading": deficit atmosferici (1998)
 - scoperta oscillazioni Super-KAMIOKANDE, MACRO
- Al contrario se guardiamo all'appearance:
 Alla scala solare: Sorgenti: reattori e v solari
 - $\nu_e \rightarrow \nu_{\mu}$ stato finale con μ sotto soglia! (SNO conta i NC)
 - Alla scala atmosferica Sorgenti: v atmosferici, fasci artificiali
 - $\nu_{\mu} \rightarrow \nu_{e}$ stato finale "RARO"! soppressione da θ_{13} ?
 - $v_{\mu} \rightarrow v_{\tau}$ stato finale "DIFFICILE" ! (per massa e c τ)

Com'e' "andata a finire" ?

 $v_{\mu} \rightarrow v_{\tau}$ Rivelazione (evento-per-evento): una sfida sperimentale e ingegneristica di primo livello. Fascio O(10) piu' energetico (17 GeV) di ogni altro LBL (m(τ)) Rivelatori "fine-grained O(100) piu' massicci dei predecessori SBL (i.e. CHORUS)

 $\nu_{\mu} \rightarrow \nu_{e}$

- Nuovo fascio (0.6 GeV) \rightarrow grande Water-Cherenkov pre-esistente (SK).
- Nuovo rivelatore vicino per caratterizzare i fondi e la normalizzazione.
- Scomparsa anti- v_{e} ai reattori (2012, Daya-Bay, RENO, DCHOOZ) θ_{13} si e' rivelato "grande" !

~ 500 membri, 59 istituti, 11 paesi

T2K

Ricerca di oscillazioni in un fascio di v_{μ} **Apparizione di v_{e}** – sensibile a $\theta_{13} e \delta_{CP}$ **Scomparsa di v_{\mu}** – sensibile a $\theta_{23} e \Delta m_{23}^{2}$ Inoltre: sezioni d'urto, v sterili, effetti inattesi ?

Apparizione dei v

Phys. Rev. Lett. 112, 061802

Segnale $v_{\mu} \rightarrow v_{e}$: (20.4 ± 1.8) (per sin² $2\theta_{13} = 0.1$, sin² $2\theta_{23} = 1.0$, $\delta_{CP} = 0$, N.I.) Fondo: (4.64 ± 0.53)

- 3.2 contaminazione di v nel fascio
- 0.9 da v NC con π^0 (rimosso il 70% del fondo non rigettato dall'analisi precedente)

• 0.3 – da anti-v

Esclusione attesa di $\{\theta_{13} = 0\}$: 5.5 ϕ

Due analisi indipendenti:

- 1) spettro dell'E ricostruita del v
- 2) distribuzione in θ e p dell'e

Significanza di **7.5** σ per $\theta_{13} \neq 0$ (p- θ)

09/04/2014

electron

Phys. Rev. Lett. 112, 061802

Apparizione dei v_e : $\theta_{13} e \delta_{cl}$

 $P_{\mu \to e} \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$

Dipendenza da θ_{23} asimmetrica rispetto $\pi/4$, sensitivita` all' ottante

l reattori misurano un valore centrale minore: θ_{23} nel 2º ottante e δ_{CP} ~ - π / 2 leggermente favoriti

Gerarchia normale best fit: **0.150** @ 90% CL: **0.097 < sin²2θ**₁₃ < **0.218**

Gerarchia inversa, best fit **0.182** @ 90% CL: **0.118 < sin²20**₁₃ < **0.261**

IFAE 2014, A. Longhin

• Il primo fascio disegnato con una precisa determinazione del Δm^2 (soppressione massimale esattamente al picco!). Attesi in assenza di osc. 446 ± 22.5 (sys.). Osservati 110.

• Analisi a 3ν (dipendenza da $\theta_{_{23}}$ non $\pi/4$ simmetrica nel termine subleading modulato da $\theta_{_{13}}$)

• Migliore misura mondiale di $\theta_{_{23}}$ (~11%)

• Δm^2 ci si sta avvicinando alle precisione di MINOS Gerarchia normale Inversa $\sin^2(\theta_{23}) = 0.514^{+0.055}_{-0.056} (0.511 \pm 0.055)$ $\Delta m^2_{13} = 2.48 \pm 0.10 \times 10^{-3} \text{ eV}^2/\text{c}^4$ inversa $\Delta m^2_{32} = 2.51 \pm 0.10 \times 10^{-3} \text{ eV}^2/\text{c}^4$ normale 09/04/2014 IFAE 2014.

T2K: prospettive

J-PARC stabilmente a 220 kW per la maggior parte dell'ultimo run 6.63·10²⁰ POT accumulati (8% del valore di disegno finale)

Prospettive: Run di anti-v per migliorare la sensitivita` alla fase di CP entro l'estate. Analisi combinata di $v_{\mu} e v_{e}$

Il fascio CNGS per l'"appearance"

< E _v >	17 GeV		
L / < E _v >	43 km/GeV		

Il picco di oscillazione per L= 732 km cade a ~ 1.5 GeV (vedi NuMI) ma il goal e' la produzione di τ \rightarrow sbilanciamento a energie piu' alte

N(τ)~ Pr($\nu_{\mu} \rightarrow \nu_{\tau}$) x $\sigma_{\nu(\tau)CC}$ (E) x flux

$(v_e + \overline{v_e}) / v_\mu$	0.9 %			
$\overline{\mathbf{v}}_{\mu}$ / \mathbf{v}_{μ}	2.1 %			
v_{τ} prompt (da D _s)	trascurabili			
(simulazione FLUKA)				

DESIGN: 4.5·10¹⁹ pot/year, 200 days/y per 5 y

Soglia produzione τ a ~ 3.5 GeV. Salita lenta.

IFAE 2014, A. Longhin

La sfida della rivelazione dei v

Rivelatore modulare di "Emulsion Cloud Chambers" Riconcilia le necessita' di

- Grande massa
 - $N_{\tau} \propto (\Delta m^2)^2 M_{target}$
- Granularita` spinta
 - ~ µm

II rivelatore OPERA

Un enorme "rivelatore di vertice" ad alta granularita`

Changeable Sheets (CS)

- + svariate installazioni ancillari "off-site":
- "refreshing" emulsioni (JP e LNGS)
- Assemblaggio/smontaggio brick (LNGS)
- Labelling e marcatura con X ray (LNGS)
- Sviluppo automatico (LNGS)
- Scanning CS (LNGS)
- Scanning bricks (Europa + JP)

09/04/2014

La road-map di OPERA

09/04/2014

Campioni e avanzamento dell'analisi delle emulsioni

Farget mass (kg)

09/04/2014

IFAE 2014, A. Longhin

Caratterizzazione dei fondi

Simulazione Monte Carlo coadiuvata da campioni di controllo.

 μ^{-}

IFAE 2014, A. Longhin

ν μ

Misure di CHORUS, campione di eventi di charm al CNGS

FLUKA + dati da test beam di brick esposti a pioni

Diffusione Coulombiana ad alto angolo dei µ nel Pb V Fondo al $\tau \rightarrow \mu$

Misure in letteratura sul fattore di forma del Pb, simulazioni e test-beam dedicati (in corso)

OPERA: validazione Monte Carlo su campioni di controllo

54 ± 4 attesi ↔ 50 osservati

Charm: topologicamente simile ai decadimenti dei τ mm 1.3 mm Data-MC per il parametro d'impatto delle tracce in eventi v CC MC v_{μ} CC int. data Entries: 2648 0.05 18 20 12 14 16 10 I.P. (μm)

IFAE 2014, A. Longhin

OPERA: validazione fondo adronico

Efficienza di localizzazione

JHEP 11 (2013) 036

Rivelatore ibrido: simulazione complessa! Ragionevole accordo.

Le predizioni per segnale e fondi sono normalizzati ai campioni 0μ e 1μ osservati nei dati e non sulle efficienze della simulazione. Confronto dati-Monte Carlo per l'efficienza di localizzazione in funzione dell'energia nel target tracker per il campioni $0\mu e 1\mu$.

Risultati nel campione analizzato

Analisi cinematica (definita gia' nel proposal) → 1.8 events τ (final sample) aumenta il rapporto S/B 1.6 τ (current sample c.s.) charm (c.s.) variable $\tau \to 1h$ $\tau \to 3h$ $\tau \to e$ 1.4 $\tau \to \mu$ hadronic (c.s.) lepton-tag No μ or e at the primary vertex ////// LAS (c.s.) 1.2 $z_{dec} \ (\mu m)$ [44, 2600]< 2600[44, 2600]< 2600 p_T^{miss} (GeV/c) $< 1^{\star}$ < 1* S/B ~ 10 ϕ_{lH} (rad) $> \pi/2^{\star}$ $> \pi/2^{\star}$ p_T^{2ry} (GeV/c) $> 0.6(0.3)^*$ > 0.25> 0.10.8 p^{2ry} (GeV/c) > 2> 3> 1 and < 15> 1 and < 15 θ_{kink} (mrad) > 20< 500 > 20> 200.6 $m, m_{min} \; (\text{GeV}/c^2)$ > 0.5 and < 20.4

Attesi: S =2.1 ev. B = 0.22 ev. 4 candidati osservati (3 adronici + 1 muonico)

Esclusione ipotesi nulla: 4.2 σ

(semplice conteggio, "channel-aware")

	Expected	Observed				
	Signal	Signal	Background	Charm	μ scattering	had int
$\tau \rightarrow h$	0.38	2	0.03	0.014		0.019
$\tau \rightarrow 3h$	0.53	1	0.15	0.142		0.003
$\tau \rightarrow \mu$	0.58	1	0.02	0.004	0.016	
$\tau \rightarrow e$	0.58	0	0.02	0.025		
total	2.1		0.22	0.185	0.016	0.022
			011 A Longhin			

0.2

n

μ

IFAE 2014, A. Longhin

3h

h

е

Phys. Lett. B691 (2010) 138

IFAE 2014, A. Longhin

JHEP 11 (2013) 036

CNGS transverse-plane view

09/04/2014 IFAE 2014, A. Longhin

II 2° candidato ($\tau \rightarrow 3h$)

II 3° candidato ($\tau \rightarrow \mu$)

Phys. Rev. D 89 (2014) 051102(R)

23

II 4° candidato ($\tau \rightarrow$ 1h, 25 Marzo 2014)

Eur. Phys. J. C73 (2013) 2345 arXiv:1307.4699

$\nu_{\mu} \rightarrow \nu_{e}$ con ICARUS

4 eventi osservati (E < 30 GeV)

Esempio:

Data sample and event rates

First result based on the analysis of 1091 v events $(3.3 \times 10^{19} \text{ pot}, 2010-2011 \text{ data}, \text{ half the total statistic})$ published in Eur. Phys. J. C73 (2013).

Analysis presented here refers to 1995 v events (6.0 \times 10¹⁹ pot)

Expected number of v_e events:

- 5.7 \pm 0.8, due to the intrinsic v_e beam contamination,
- 2.3 \pm 0.5, due to θ_{13} oscillations, $\sin^2(\theta_{13}) = 0.0242 \pm 0.0026$,
- 1.3 ± 0.1, from $v_{\mu} \rightarrow v_{\tau}$ oscillations with subsequent electron production, (3v mixing).

Total: 9.3 \pm 0.9 expected events.

Expected events, weighting for efficiency: 6.4 ± 0.9 events.

IFAE 2014, A. Longhin

$v_{\mu} \rightarrow v_{e}$ esotica con ICARUS

Eur. Phys. J. C73 (2013) 2345 Eur. Phys. J. C73 (2013) 2599

ICARUS results on the LSND-anomaly search (double statistics)

Neutrino

Within the present observation, our results is consistent with the absence of the LSND anomaly. 10 Weighting for efficiency, our $\Delta m^2 (eV^2)$ limits on the number of events due to LSND anomaly are: 3.68 (90% CL) and 8.34 (99% CL). **10**⁻¹ which give the limits on oscillation probabilities: P($\nu_{\mu} \rightarrow \nu_{e}$) ≤ 3.4 × 10⁻³ (90% CL): P($\nu_{\mu} \rightarrow \nu_{e}$) ≤ 7.6 × 10⁻³ (99% CL). 10-2

Natal WIN September 2013

09/04/2014

IFAE 2014, A. Longhin

Conclusioni

- L'ultimo anno e' stato ricco di risultati importanti che coronano i notevoli sforzi sperimentali delle collaborazioni coinvolte
- L'appearance e' un tassello importante nel quadro del modello delle oscillazioni
- Osservata da esperimenti ad alto rapporto segnale/rumore
 - OPERA: 4 candidati v S/B=10. Assenza di segnale esclusa a 4.2 σ
 - T2K: 28 candidati v S/B 4-5. θ_{13} = 0 escluso a 7.5 σ
- T2K: Misure di "precisione" della matrice di mixing (θ_{23}), primi hints su δ_{CP}
 - ICARUS (e OPERA): Limiti su effetti da neutrini sterili su baseline lunga

Ci sono le basi potenziali per prolungare questa "serie positiva" nel futuro mantenendo un ruolo importante nel quadro internazionale

- grande θ_{13} + esperienza su rivelatori chiave (alta granularita`)
- \rightarrow CP violation leptonica + nuovi fenomeni (p.e. v sterili)

Variabili cinematiche per i quattro candidati

09/04/2014

IFAE 2014, A. Longhin

Visible energy of all the candidates

Sum of the momenta of charged particles and γ 's measured in emulsion

Vista schematica a bilanciamento in pT

