

Stato e prospettive di misura dell'esperimento NA62

IFAE, L'Aquila 9th April 2014

Marco Mirra – Università degli studi di Napoli Federico II and INFN Napoli

on behalf of the NA62 collaboration:

Birmingham, Bratislava, Bristol, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Liverpool, Louvain, Mainz, Merced, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Stanford, Sofia, Torino

Outline

> NA48/2 and NA62 (R_K phase)

- $> K^+ \rightarrow \pi^+ v v$ decay
- > NA62 experimental apparatus
- > NA62 expected results

K_{e2} and **K**_{µ2}: motivations

• $K, \pi \rightarrow \ell v$ decays are helicity suppressed in SM

$$\Gamma^{SM}(P^{\pm} \to \ell^{\pm} \nu) = \frac{G_F^2 M_P M_\ell^2}{8\pi} \left(1 - \frac{M_\ell^2}{M_P^2}\right) f_P^2 |V_{qq'}|^2$$

• The ratio **R**_K accurately predicted within the SM

$$R_{K}^{SM} = \frac{\Gamma^{SM}(K^{\pm} \to e^{\pm} \nu_{e})}{\Gamma^{SM}(K^{\pm} \to \mu^{\pm} \nu_{e})} = \left(\frac{M_{e}}{M_{\mu}}\right)^{2} \left(\frac{M_{K}^{2} - M_{e}^{2}}{M_{K}^{2} - M_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{QED}\right) = (2.477 \pm 0.001) \times 10^{-5}$$

[V. Cirigliano and I. Rosell, JHEP 0710:005 (2007)]

• Cancellation of hadronic uncertainties

 $\left.\frac{\Delta R_K}{R_K}\right|_{SM} \sim 0.04\%$

• A precise measurement probes $\mu - e$ universality and provides a stringent test of the SM

NA48/2 and NA62 (R_K phase) experimental setup

Primary target 100 m		Magnet p⊥ ~ 265 MeV	
<u>K</u> ±	<i>e[±]/µ[±]</i>	DC 1 DC 2 DC 3 DC 4	Hodo
	decay volume	spectrometer	at 10 GeV
	Drift chambers	$\sigma(p)/p = 0.48\% \oplus 0.009\% p \text{ [GeV]}$ $\sigma_{x,y} = 90 \ \mu\text{m}$	0.48%
	LKr calorimeter	$\sigma_E / E = 3.2\% / \sqrt{E} \text{ [GeV]} \oplus 9\% / E \text{ [GeV]} \oplus 0.42\%$ $\sigma_x = \sigma_y = 4.2 \text{ mm} / \sqrt{E} \oplus 0.6 \text{ mm}$	1.4% 1.5 mm
	Hodoscope	Fast trigger, good time resolution (150 ps)	

R_K measurement strategy

Common reconstruction:

- > 1 Reconstructed Track
- Photon veto using LKr
- Track momentum 13 GeV/c
- Good decay vertex reconstruction

Kinematical separation :

- > Missing mass $M^2 = (p_K p_l)^2$
- \succ **P**_K : Average monitored with **K**_{3 π} decays

Particle Identification => Muon suppression ~10⁻⁶

▷ E/p = (LKr energy deposit/track momentum)
0.90<E/p<1.10 for electrons with P≤25GeV
0.95<E/p<1.10 for electrons with P>25 GeV
E/p<0.85 for muons

R_K final result

0.4% accuracy reached (cfr. PDG2008 4.5%)! But theoretical error still 1 order of magnitude smaller ...

$R_{K} = 2.488(7)_{stat}(7)_{syst}10^{-5}$ [PLB 719 (2013) 326]

Outline

NA48/2 and NA62 (R_K phase) K⁺→π⁺vv decay NA62 experimental apparatus

> NA62 expected results

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay in SM

• FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically:
 - > SD contribution dominate $A_q \sim \frac{M_q^2}{M_W^2} V_{qs}^* V_{qd}$
 - → Hadronic matrix element related to the precisely measured BR $(K^+ \rightarrow \pi^0 e^+ \nu_e)$
- **BR** proportional to $|V_{ts}*V_{td}|^2$
- SM prediction [Brod, Gorbahn and Stamou 2011 and refs therein]

$$BR(K^+ \to \pi^+ v \bar{v}) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$$

Error on input parameters (V_{cb} , ρ , ...) and other theory errors (mostly LD correction)

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ beyond SM

New physics affects BRs differently for different channels Multiple measurements can discriminate among NP scenarios

SM4: SM with 4th generation (Buras et al. '10) LHT: Littlest Higgs with T parity (Blanke '10) RSc: Custodial Randall-Sundrum (Blanke '09) MFV: Minimal flavor violation (Hurth et al. '09)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay: experimental status

In 2008, combine E787 (1995-8 runs) & E949 (12-weeks run in 2001) results

Expected bkg 2.6 events, prob. all 7 obs. evts are bkg is ~10⁻³

Outline

NA48/2 and NA62 (R_K phase) K⁺→π⁺vv decay NA62 experimental apparatus

> NA62 expected results

NA62 experimental strategy

Main goal: Detect ~100 SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decays with O(10%) precision BR measurement

- High K momentum (in flight technique)
- Kinematical rejection w lightweight spectrometers (GTK, STRAW)
- Low π momentum to allow enough «missing» energy to be detected by hermetic veto detectors (LAV,IRC,SAC,LKr)
- Particle identification (RICH, MUV)
- Beam particle identification and inelastic event suppression (KTAG, CHANTI)

NA62 setup

NA62 beam

Primary SPS proton beam:

- *p* = 400 GeV protons
- Proton on target 1.1×10^{12} /s
- Simultaneous beam delivery to LHC

High-intensity, unseparated secondary beam

- Momentum selection chosen to optimize *K* decays
- $p = 75 \text{ GeV/c} (1.4 \times \text{more } K^+ \text{ than NA48/2})$
- $\Delta p/p \sim 1\%$ (3× smaller than NA48/2)

Decay volume

- 60m long, starting at 102m from target
- 10% of K⁺ decay in FV ($\beta \gamma c \tau = 560m$)
- $4.5 \times 10^{12} \text{ K}^+ \text{ decays/yr} = 45 \times \text{NA48/2}$

NA62 setup: Gigatracker and Straw tracker

NA62: Gigatracker and Straw tracker

Gigatracker

Tracks particles in the unseparated beam with 3 planes of hybrid Si pixel detectors

On site bump bonded readout chip 0.13 µm CMOS tech (200+100 µm ~ 0.5% X₀) Pixel size 300x300µm², $\sigma_p/p \sim 0.2\%$, $\sigma_{\theta} = 16$ µrad

The installation of the 3 stations will be completed in October 2014

Straw-tracker

4 chambers, 2.1 m in diameter 16 layers (4 views) of straws per chamber

 $\sigma \le 130 \ \mu m \ (1 \ view)$ 0.45 X_0 per chamber $\sigma_p/p = 0.32\% \oplus 0.008\% p$ $\sigma_{\theta(K\pi)} = 20-50 \mu rad$

1 chamber already installed, another module is expected to be at CERN in June 2014

NA62 setup: KTAG and CHANTI

NA62 beam identification and inelastic interaction

KTAG

Identifies 45 MHz of K^+ in 750 MHz of unseparated beam Running with H2 at 3.85 bar Completely new, high segmentation readout Requirements: K tagging @ 10⁻³ level, $\sigma_t \sim 100$ ps

CERN CEDAR reused, it will be completed by the end of August 2014

CHANTI

Detection of particles from inelastic interactions(IIs) in GTK3 mimicking a pion in time with a kaon 6 stations hermetic to charged particles between 49 mrad and 1.31 rad Each station is made of 24 scintillation bars in each view (X & Y) WLS fibers inside each bar, readout by SiPM on one side only(other is mirrored)

IIs happen every 5/10⁴ (GEANT studies)

Installation will be completed in June 2014

NA62 setup: particle identification

Stato e prospettive di misura dell'esperimento NA62 - M. Mirra - IFAE - L'Aquila - 09/04/2014

19

NA62 particle identification

MUV system: π/μ identification & trigger

MUV1-2: Fe/scintillator hadron calorimeter

- Used offline to provide principal veto for $K \rightarrow \mu v$
- Rejects μ to 10^{-5}
- MUV3: Fast μ identification for trigger
- Vetoes μ online at 10 MHz with $\sigma_t < 1$ ns

MUV2 & 3 installed, MUV1 is being assembled

RICH provides additional 10⁻² μ rejection to exclude $K \rightarrow \mu v$

 μ/π separation better than 1% for 15 GeV $Measures <math>\pi$ crossing time with $\sigma_t < 100$ ps Provides L0 trigger for charged particles Ne gas at 1 atm $p_{\text{thresh}} = 12$ GeV for π 2000 8-mm PMTs on upstream flanges

RICH vessel installed; installation will be completed in September 2014

NA62 setup: photon veto detectors

Stato e prospettive di misura dell'esperimento NA62 - M. Mirra - IFAE - L'Aquila - 09/04/2014

21

NA62 photon veto detectors

Large angles vetoes (LAV) 8.5 < θ < 50 mrad 12 stations at intervals of ~10m along decay volume Each station has 4-5 rings/station of lead glass blocks $1-\varepsilon$ for e^- at 200 MeV: $(1\pm 1) \times 10^{-4}$

LAV 1 to 9 installed, LAV 10+11 already at CERN, LAV 12 in construction

Liquid krypton calorimeter (LKr) $1 < \theta < 8.5$ mrad

Quasi-homogeneous ionization calorimeter Readout towers $2 \times 2 \text{ cm}^2$ - 13248 channels Depth 127 cm = 27 X₀ $1-\epsilon$ for γ with E > 10 GeV: < 8 × 10⁻⁶

LKr from NA48 setup

SAC & IRC: very small angle veto Shashlik calorimeters

SAC: γ detection along the beamline (after beam deflection) IRC: detection of photons at very low angle in front of the LKr, radial coverage 7 cm < R< 14 cm WLSs+PMTs used for both detectors

SAC is installed, IRC installation in July

Outline

- > NA48/2 and NA62 (R_K phase)
- $> K^+ \rightarrow \pi^+ v v \text{ decay}$
- > NA62 experimental apparatus
- > NA62 expected results

Performance for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Acceptance: ~12%

3% in Region I9% in Region II50% loss from momentum cutDetector inefficiencies included

45 signal events/yr

- 1 track with 15<p_π<35 GeV and π PID in RICH
- No γ in LAV, LKr, IRC, SAC
- No µ in MUV
- 1 beam particle in Gigatracker with K PID by KTAG
- No activity on CHANTI
- Z_{vtx} in 60m fiducial region

Expected backgrounds			
$K^{+} \rightarrow \pi^{+} \pi^{0}$	11%		
$K^+ \rightarrow \pi^+ \pi^0 \gamma_{IB}$	3%		
$K^+ \rightarrow \mu^+ v$	2%		
$K^+ \rightarrow \mu^+ v \gamma_{\rm IB}$	1%		
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	< 2%		
K^{+}_{e4} , other 3 track decays	< 2%		
$K^{+}_{e3}, K^{+}_{\mu3}$	negligible		
Total	< 20%		

NA62 sensitivity for LFNV decays

High fluxes and PID/veto capabilities of NA62 well suited to look for Lepton Flavor/ Lepton Number Violation modes in both kaon and pion decays:

Decays in FV in 2 years of data

 $\begin{bmatrix} 1 \times 10^{13} K^{+} \text{ decays} \\ 2 \times 10^{12} \pi^{0} \text{ decays} \end{bmatrix}$

Single-event sensitivity 1/(decays × acceptance)

Mode	UL at 90% CL	Experiment	NA62 acceptance*
$K^{\! +} \longrightarrow \pi^{\! +} \mu^{\! +} e^{-}$	1.3 × 10 ⁻¹¹	BNL 777/865	100/
$K^{\! +} \longrightarrow \pi^{\! +} \mu^{-} e^{\! +}$	5.2 × 10 ⁻¹⁰	BNL 865	~10%
$K^{\! +} \rightarrow \pi^{\! -} \mu^{\! +} e^{\! +}$	5.0 × 10 ⁻¹⁰	BNL 865	~10%
$K^{\!+} \longrightarrow \pi^{\!-} e^+ e^+$	6.4 × 10 ⁻¹⁰	BNL 865	~5%
$K^{\!+} \longrightarrow \pi^{\!-} \mu^{\!+} \mu^{\!+}$	1.1 × 10 ⁻⁹	NA48/2	~20%
$K^{\!+} \longrightarrow \mu^{\!-} v e^+ e^+$	2.0 × 10 ⁻⁸	Geneva Saclay	~2%
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no data		~10%
$\pi^0 \longrightarrow \mu^+ e^-$	3.6×10^{-10}	KToV	~2%
$\pi^0 \longrightarrow \mu^- e^+$	5.0 × 10 ×	KIEV	~~ /0

* From fast Monte Carlo simulation with flat phase-space distribution. Includes trigger efficiency.

NA62 single-event sensitivities:

~10⁻¹² for K^+ decays ~10⁻¹¹ for π^0 decays

NA62 timeline

- 5 years of construction interleaved with a Technical Run in fall 2012
- In 2014 a first Run with full detector
- Plan 3 years of Physics data taking before LHC Long Shutdown 2 (LS2)

Conclusion

- More than 60 years after their discovery kaons provide a unique playground for testing our ideas on fundamental physics
- NA62 collaboration is analyzing data taken in past years and producing very precise results for both leptonic, non-leptonic and semileptonic kaon decays.
- But the best is yet to come, with the new generation NA62 apparatus: it will collect an unprecedented statistics and exploit its powerful detector features to push further our knowledge of rare (and forbidden) kaon decays.

NA62 will begin data taking at the end of this year, so stay tuned ...

Ke2: µ background

Subsample of data (55%) taken with a 9.2-X₀ Pb in fornt of LKr in order to measure <u>on data the μ mis-ID</u>

Four samples analyzed independently: K⁺(Pb) ; K⁺ (NoPb); K⁻(Pb) ; K⁻ (NoPb)

Full 2007 data sample analyzed: 145'958 Ke2

Data sample	K^+ (noPb)	$K^+(Pb)$	$K^{-}(\text{noPb})$	$K^{-}(Pb)$
K_{e2} candidates	59813	63282	10530	12333
Muon halo	$(1.11 \pm 0.09)\%$	$(1.51 \pm 0.10)\%$	$(4.61 \pm 0.18)\%$	$(7.86 \pm 0.23)\%$
$K_{\mu 2}$	$(6.11 \pm 0.22)\%$	$(5.33 \pm 0.19)\%$	$(5.76 \pm 0.20)\%$	$(4.87 \pm 0.17)\%$
$K_{\mu 2} \ (\mu \to e \text{ decay})$	$(0.26 \pm 0.04)\%$	$(0.27 \pm 0.04)\%$	$(0.31 \pm 0.09)\%$	$(0.19 \pm 0.07)\%$
$K^{\pm} \to e^{\pm} \nu \gamma \; (\mathrm{SD}^+)$	$(1.07 \pm 0.05)\%$	$(4.01 \pm 0.18)\%$	$(1.25 \pm 0.06)\%$	$(3.95 \pm 0.17)\%$
$K^{\pm} \to \pi^0 e^{\pm} \nu$	$(0.05 \pm 0.03)\%$	$(0.28 \pm 0.14)\%$	$(0.09 \pm 0.05)\%$	$(0.37 \pm 0.17)\%$
$K^{\pm} \rightarrow \pi^{\pm} \pi^0$	$(0.05 \pm 0.03)\%$	$(0.18 \pm 0.09)\%$	$(0.06 \pm 0.03)\%$	$(0.18 \pm 0.09)\%$
Opposite sign K	-	$(0.04 \pm 0.01)\%$	-	$(0.25 \pm 0.03)\%$
Total background	$(8.65 \pm 0.25)\%$	$(11.62 \pm 0.33)\%$	$(12.08 \pm 0.29)\%$	$(17.67 \pm 0.39)\%$

NA62: 2014 Physics Goal

≻Assumptions:

- 60 days of data taking
- 10% of the nominal Intensity x data taking efficiency

$$N_K = 0.06 \times (4.5 \times 10^{12}) = 2.7 \times 10^{11}$$

$$N_{\pi\nu\bar{\nu}}^{selected} = N_K \cdot BR(\pi\nu\bar{\nu}) \cdot A_{\pi\nu\bar{\nu}} = \left(2.7 \times 10^{11}\right) \cdot \left(0.8 \times 10^{-10}\right) \cdot 0.1$$

 $N_{\pi\nu\overline{\nu}}^{selected} \approx 2.2(SM)$

>Aiming to reach the SM sensitivity:

- may provide a BR measurement competitive with the existing one...
- ...or find out what is still missing to do so...

Rare π^0 decays in NA62

$2 \times 10^{12} \pi^0$ decays in FV in 2 years of data will allow substantial improvement of results in many channels

Mode	Current knowledge	Experiment	Expectation in SM	Physics interest	
Neutral modes					
$\pi^0 \rightarrow 3\gamma$	BR _{90CL} < 3.1×10 ⁻⁸	Crystal Box	Forbidden	Violates C	
$\pi^0 \rightarrow 4\gamma$	BR _{90CL} < 2×10 ^{−8}	Crystal Box	BR ~ 10 ⁻¹¹	Scalar states $\pi^0 \rightarrow SS$	
$\pi^0 \rightarrow inv$	BR _{90CL} < 2.7×10 ⁻⁷	BNL 949	BR < 10 ⁻¹³ (cosm. limit)	N _v , LFV	
Charged modes					
$\pi^0 \rightarrow e^+ e^- e^+ e^-$	BR = 3.34(16)×10 ⁻⁵	KTeV	3.26(18) ×10-5	Off-shell vectors	
$\pi^0 \rightarrow e^+ e^- \gamma$	$\begin{array}{l} {\sf BR}_{95{\sf CL}}(\pi^0{\to}U\gamma):\\ <1{\times}10^5,M_U{=}30~{\sf MeV}\\ <3{\times}10^6,M_U{=}100~{\sf MeV} \end{array}$	WASA/COSY	Null result	Dark forces	

Trigger for LFN modes in NA62

KTAG

- Go for 64 PMT's per octant (512 in total)/ 48 in 2014
- Hamamtsu R7400 replaced by successor R9980 (better in some respect higher gain and QE)
- Hybrid solution 16x R7400 and 48x R9980 per octant
- Use increased number of HPTDC boards to optimize rate capabilities.

GigaTracker

- The ASIC tests show that the chip is working as expected.
- GTK carrier board designed, a prototype is ordered
- The chip thinning and bump bonding has been successfully tested on dummy chips.

The remaining work is on a tight time plan, but the most difficult technical issues have been mastered

Straw Chambers

- Straw Module Assembly:
 - At CERN: 4/4 modules are completed
 - AT JINR: 3/4 modules completed, the last module will be finished in June).
- Dressing and Stacking of Modules:
 - i.e. attaching all services (HV,LV and gas patch panels) to the chambers is in full swing.
- Electronics:
 - The frontend electronics were all produced and successfully tested.
 - The SRB (back-end electronics) development is coming to the end and the production of a pre-series is expected to be available in June 2014

Estimation of the $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ background

Branching Ratio = ~21%

- Evaluation of the effect of the kinematic cuts using the simulation
- Evaluation of the single γ detection efficiency:
 - Intrisinc inefficiencies of the calorimeters from test-beam and NA48/NA62 data
 - Effect of the material in front of the calorimeter studied on simulation
 - Separation between π^+ cluster and γ cluster @ LKr taken into account
- Evaluation of the π^0 rejection power:
 - Single γ detection inefficiency applied parametrically to the γ 's of $\pi^+\pi^0$ events
- Factorization of the kinematic and photon rejection
- Contribution from the radiative tails:
 - Evaluated by considering only the gaussian resolution of the tracking systems
- Result: 10% + 3% (radiative) (cut & count analysis without any optimization)
- Method to measure on data the γ detection efficiency from $K^+ \rightarrow \pi^+ \pi^0$
- Kinematic rejection can be measured on data from $K^+ \rightarrow \pi^+ \pi^0$ reconstructed by using the LKr
- Strongly momentum and Z vertex dependent.

Estimation of the $K^+ \rightarrow \mu^+ \nu$ (γ) background

Branching Ratio = ~64%

- Evaluation of the effect of the kinematic cuts using the simulation
- Calorimeters for π^+ identification and $\mu \pi$ separation
- RICH for $\mu \pi$ separation
- Factorization of the Kinematic rejection factor, the Particle ID from Calorimetry and Particle ID from RICH assumed.
- Contribution from the radiative tails evaluated

- Result: 2.2% + 1% (radiative) (cut & count analysis without any optimization)
- The RICH (Calorimeters) can be used to select a pure sample of K⁺→µ⁺v in order to measure on data the rejection power from the Calorimeters (RICH).
- The RICH can be used to cross check the momentum measured in the spectrometer

Estimation of the $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ background

Branching Ratio = ~5.6%

- Evaluation of the effect of the kinematic cuts using the simulation
- Evaluation of the effect of the cuts against extra charged particles in the final state
 - RICH
 - LAVs
 - Forward calorimeters (LKr, MUV1,2, IRC)
 - Straws
- Factorization of the cut on m_{miss}^2 and the multiplicity cuts.
- Result: 1 2% (cut & count analysis without any optimization)
- High level of redundancy in the multplicity analysis
- Similar study performed for $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ (Branching Ratio ~4.3×10⁻⁵)
- Contribution <2%.