10 Aprile 2014 IFAE, GSSI & LNGS, l'Aquila

Limiti Indipendenti dai modelli sulla Ricerca Diretta di Materia Oscura

basato su: P.Panci, Review in Adv.High Energy.Phys. [arXiv: 1402.1507]

M.Cirelli, E.Del Nobile, P.Panci JCAP **1310** (2013), **019**, [arXiv: 1307.5955]

Ricerca Diretta: Overview

La rivelazione diretta di MO ha lo scopo di misurare i rinculi nucleari indotti da:

- scattering elastico: $\chi + \mathcal{N}(A, Z)_{\text{rest}} \rightarrow \chi + \mathcal{N}(A, Z)_{\text{recoil}}$
- scattering inelastico: $\chi + \mathcal{N}(A, Z)_{\text{rest}} \rightarrow \chi' + \mathcal{N}(A, Z)_{\text{recoil}}$

I segnali di MO sono dei fenomeni molto rari (conteggi minori di 1 cpd/kg/keV)

Ricerca Diretta: Overview

Velocità locale della MO $v_0 \sim 10^{-3}c \implies$ le collisioni tra $\chi \& N$ avvengono in un regime profondamente non relativistico

Ricerca Diretta: Overview Velocità locale della MO $v_0 \sim 10^{-3}c$ \Rightarrow le collisioni tra $\chi \& N$ avvengono in un regime profondamente non relativistico

Rate differenziale teorico dei rinculi nucleari in un dato rivelatore

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}(v, E_{\mathrm{R}}) = \frac{1}{32\pi} \frac{1}{m_{\chi}^2 m_{\mathcal{N}}} \frac{1}{v^2} \frac{|\mathcal{M}_{\mathcal{N}}|^2}{|\mathcal{M}_{\mathcal{N}}|^2} \longrightarrow \begin{array}{l} \text{Elemento di Matrice (EM)}\\ \text{al livello del Nucleo} \end{array}$$

 $v \ll c \Rightarrow$ Il framework della meccanica quantistica Relativistica non è appropriato

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}(v, E_{\mathrm{R}}) = \frac{1}{32\pi} \frac{1}{m_{\chi}^2 m_{\mathcal{N}}} \frac{1}{v^2} \frac{|\mathcal{M}_{\mathcal{N}}|^2}{|\mathcal{M}_{\mathcal{N}}|^2} \longrightarrow \begin{array}{l} \text{Elemento di Matrice (EM)} \\ \text{al livello del Nucleo} \end{array}$$

 $v \ll c \quad \Rightarrow$ Il framework della meccanica quantistica Relativistica non è appropriato

Framework degli Operatori non-relativistici

NR d.o.f. per lo scattering elastico

- \vec{v} : Velocità relativa
- $ec{q}$: Momento trasferito
- \vec{s}_N : spin del nucleone (N = (p, n))
- $ec{s}_\chi$: spin della MO

L'EM a livello del nucleone può esser costruito come combinazioni Galileane dei d.o.f.

$$|\mathcal{M}_N| = \sum_{i=1}^{12} \mathbf{c}_i^N(\lambda, m_\chi) \mathcal{O}_i^{\mathrm{NR}}$$

funzioni dei parametri liberi di una data teoria (e.g. accoppiamenti, masse dei mediatori, etc..), espressi in termini di Operatori NR

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}(v, E_{\mathrm{R}}) = \frac{1}{32\pi} \frac{1}{m_{\chi}^2 m_{\mathcal{N}}} \frac{1}{v^2} \frac{|\mathcal{M}_{\mathcal{N}}|^2}{|\mathcal{M}_{\mathcal{N}}|^2} \longrightarrow \begin{array}{l} \text{Elemento di Matrice (EM)} \\ \text{al livello del Nucleo} \end{array}$$

⇒ Il framework della meccanica quantistica Relativistica non è appropriato $v \ll c$

Framework degli Operatori non-relativistici

NR d.o.f. per lo scattering elastico

 \vec{v} : Velocità relativa

 $\mathrm{d}\sigma$

- \vec{q} : Momento trasferito
- \vec{s}_N : spin del nucleone (N = (p, n))
- \vec{s}_{χ} : spin della MO

L'EM a livello del nucleone può esser costruito come combinazioni Galileane dei d.o.f.

$$|\mathcal{M}_N| = \sum_{i=1}^{12} \mathbf{c}_i^N(\lambda, m_{\chi}) \mathcal{O}_i^{\mathrm{NR}}$$

funzioni dei parametri liberi di una data teoria (e.g. accoppiamenti, masse dei mediatori, etc..), espressi in termini di Operatori NR

Interazione di contatto ($q \ll \Lambda$) $\mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$, $\mathcal{O}_3^{\mathrm{NR}} = i \, \vec{s}_N \cdot (\vec{q} \times \vec{v}^{\perp}) \,, \quad \mathcal{O}_4^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{s}_N \,,$ $\mathcal{O}_5^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp}) \,, \quad \mathcal{O}_6^{\mathrm{NR}} = (\vec{s}_{\chi} \cdot \vec{q}) (\vec{s}_N \cdot \vec{q}) \,,$ $\mathcal{O}_7^{\mathrm{NR}} = \vec{s}_N \cdot \vec{v}^{\perp} , \qquad \qquad \mathcal{O}_8^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{v}^{\perp} ,$ $\mathcal{O}_9^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot (\vec{s}_N \times \vec{q}) , \quad \mathcal{O}_{10}^{\mathrm{NR}} = i \, \vec{s}_N \cdot \vec{q} ,$ $\mathcal{O}_{11}^{\mathrm{NR}} = i \, \vec{s}_{\gamma} \cdot \vec{q} \,, \qquad \qquad \mathcal{O}_{12}^{\mathrm{NR}} = \vec{v}^{\perp} \cdot (\vec{s}_{\gamma} \times \vec{s}_{N}) \,.$

Interazione a lungo raggio ($q \gg \Lambda$)

$$\begin{split} \mathfrak{O}_{1}^{\mathrm{lr}} &= \frac{1}{q^{2}} \, \mathfrak{O}_{1}^{\mathrm{NR}} \,, \qquad \mathfrak{O}_{5}^{\mathrm{lr}} = \frac{1}{q^{2}} \, \mathfrak{O}_{5}^{\mathrm{NR}} \,, \\ \mathfrak{O}_{6}^{\mathrm{lr}} &= \frac{1}{q^{2}} \, \mathfrak{O}_{6}^{\mathrm{NR}} \,, \qquad \mathfrak{O}_{11}^{\mathrm{lr}} = \frac{1}{q^{2}} \, \mathfrak{O}_{11}^{\mathrm{NR}} \,. \end{split}$$

Il Nucleo non è puntiforme

Ci sono diverse Risposte Nucleari per ciascuna coppia di nucleoni & e ciascuna coppia di Operatori NR

 $|\mathcal{M}_{\mathcal{N}}|^{2} = \frac{m_{\mathcal{N}}^{2}}{m_{N}^{2}} \sum_{i,j=1}^{12} \sum_{N,N'=p,n} c_{i}^{N} c_{j}^{N'} F_{i,j}^{(N,N)}$ pairs of NR pairs of Nuclear response operators nucleons of the target nuclei

Risposte Nucleari per alcuni nuclei rilevanti nella Ricerca Diretta:

"The Effective Field Theory of Dark Matter Direct Detection", JCAP 1302 (2013) 004

$$\frac{\mathrm{d}R_{\mathcal{N}}}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathcal{N}} \frac{\rho_{\odot}}{m_{\chi}} \frac{1}{32\pi} \frac{m_{\mathcal{N}}}{m_{\chi}^2 m_N^2} \sum_{i,j=1}^{12} \sum_{N,N'=p,n} \mathfrak{c}_i^N \mathfrak{c}_j^{N'} \int_{v_{\min}(E_{\mathrm{R}})}^{v_{\mathrm{esc}}} \mathrm{d}^3 v \frac{1}{v} f_{\oplus}(v) F_{i,j}^{(N,N')}(v,q^2)$$

Comparazione con i dati Sperimentali

tieni in considerazione della risposta e della risoluzione energetica del rivelatore

exposure

corre su le diverse specie nucleari (e.g. DAMA e CRESST sono rivelatori multi-target) quenching factor: tiene in considerazione il rilascio parziale dell'energia

Comparazione con i dati Sperimentali

tieni in considerazione della risposta e della risoluzione energetica del rivelatore

exposure

corre su le diverse specie nucleari (e.g. DAMA e CRESST sono rivelatori multi-target) quenching factor: tiene in considerazione il rilascio parziale dell'energia

Limiti Indipendenti dal Modello

una volta calcolati tutti i fattori di forma integrati, si può semplicemente dedurre il numero degli eventi per qualsiasi interazione, la quale fisica particellare è incapsulata nei coefficienti c_i^N

Limiti Indipendenti dal Modello

una volta calcolati tutti i fattori di forma integrati, si può semplicemente dedurre il numero degli eventi per qualsiasi interazione, la quale fisica particellare è incapsulata nei coefficienti \mathfrak{c}_i^N

Per esempio i limiti dipendenti dal modello presentati dalle collaborazione sperimentali potranno esser applicati anche ad altri tipi di modello

Interazione di Prova

Interazione di Prova

Determinazione del valore massimo del parametro $\lambda_{\rm B}$ permesso dai dati exp.

 $\begin{array}{l} \mbox{Test Statistico (TS): Likelihood Ratio} \\ \mbox{TS}(\lambda_{\rm B},m_{\chi}) = -2\ln\left(\mathcal{L}(\vec{N}^{\rm obs} \mid \lambda_{\rm B})/\mathcal{L}_{\rm bkg}\right) \\ \mbox{likelihood per ottenere il} & \qquad & \searrow \mbox{bkg.} \\ \mbox{set dei dati osservati} & \qquad & \mbox{likelihood} \\ \mbox{per ciascun valore della massa } m_{\chi}, \mbox{il limite minimo} \\ \mbox{al 90% CL può esser ottenuto dalla relazione:} \\ \mbox{TS}(\lambda_{\rm B},m_{\chi}) = \chi^2_{90\% \, \rm CL} \simeq 2.71 \end{array}$

Interazione di Prova

 10^{-7}

10

DM Mass

 10^{2}

 10^{3}

 m_{χ} [GeV]

 10^{4}

Le funzioni TS che permettono agli utenti di derivare il limite λ^{CL}_B al CL desiderato possono esser scaricate da: <u>http://www.marcocirelli.net/NROpsDD.html</u>

Funzioni di "scaling"

Per qualsiasi modello i limiti devono
esser disegnati allo stesso CL:
$$TS(\lambda, m_{\chi}) = TS(\lambda_B, m_{\chi})$$

Per gli Exp. con risultati nulli si ha:
 $\sum_k N_k^{th}(\lambda, m_{\chi}) = \sum_k N_{k,B}^{th}(\lambda_B, m_{\chi})$

$$N_k^{\rm th}(\lambda, m_{\chi}) = \sum_k N_{k,\rm B}^{\rm th}(\lambda_{\rm B}, m_{\chi})$$

Funzioni di "scaling"

Per qualsiasi modello i limiti devono
esser disegnati allo stesso CL:
$$TS(\lambda, m_{\chi}) = TS(\lambda_B, m_{\chi})$$

Per gli Exp. con risultati nulli si ha:
 $\sum_k N_k^{th}(\lambda, m_{\chi}) = \sum_k N_{k,B}^{th}(\lambda_B, m_{\chi})$

$$\begin{split} & \tilde{\mathcal{Y}}_{i,j}^{12} \sum_{\substack{N,N'=p,n \\ \text{Parte dipendente dal Modello BSM \\ \tilde{\mathcal{Y}}_{i,j}^{(N,N')}(m_{\chi})} = \lambda_{\mathrm{B}}^{2} \\ & \tilde{\mathcal{Y}}_{i,j}^{(N,N')}(m_{\chi}) = \frac{\sum_{k} \tilde{\mathcal{F}}_{i,j}^{(N,N')}(m_{\chi},k)}{\sum_{k} \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\chi},k)} \end{split} \begin{array}{l} \text{Funzioni di ``Scaling''} \\ & \text{Fisica Nucleare} \\ & \text{- Astrofisica} \\ & \text{- Dettagli Exp.} \end{split}$$

Funzioni di "scaling"

Per qualsiasi modello i limiti devono
esser disegnati allo stesso CL:
$$TS(\lambda, m_{\chi}) = TS(\lambda_B, m_{\chi})$$

Per gli Exp. con risultati nulli si ha:
 $\sum_k N_k^{th}(\lambda, m_{\chi}) = \sum_k N_{k,B}^{th}(\lambda_B, m_{\chi})$

$$\begin{split} & \tilde{\mathcal{Y}}_{i,j=1}^{12} \sum_{N,N'=p,n} \mathbf{c}_{i}^{N}(\lambda,m_{\chi}) \mathbf{c}_{j}^{N'}(\lambda,m_{\chi}) \tilde{\mathcal{Y}}_{i,j}^{(N,N')}(m_{\chi}) = \lambda_{\mathrm{B}}^{2} \\ & \text{Parte dipendente dal Modello BSM} \quad \text{Parte indipendente} \\ & \tilde{\mathcal{Y}}_{i,j}^{(N,N')}(m_{\chi}) = \frac{\sum_{k} \tilde{\mathcal{F}}_{i,j}^{(N,N')}(m_{\chi},k)}{\sum_{k} \tilde{\mathcal{F}}_{1,1}^{(p,p)}(m_{\chi},k)} \quad \begin{array}{c} \text{Funzioni di ``Scaling''} \\ & \text{Fisica Nucleare} \\ & \text{- Astrofisica} \\ & \text{- Dettagli Exp.} \\ \end{array}$$

http://www.marcocirelli.net/NROpsDD.html

Esempio: Interazioni SI & SD

$$\sigma_{\rm SI}^p = \frac{\lambda_{\rm SI}^2}{\pi} \mu_{\chi p}^2$$

Sezione d'urto totale SI a livello del nucleone

Lagrangiana effettiva SD a livello del nucleone
$$\mathcal{L}_{
m SD}^N = \lambda_{
m SD} \cdot ar{\chi} \gamma^\mu \gamma^5 \chi \, ar{N} \gamma_\mu \gamma^5 N$$

$$\sigma_{\mathrm{SD}}^p = 3 \frac{\lambda_{\mathrm{SD}}^2}{\pi} \mu_{\chi p}^2$$

Sezione d'urto totale SD a livello del nucleone

Conclusioni

Ho descritto un metodo e un set completo di strumenti numerici per derivare i limiti da alcuni esperimenti in Rivelazione diretta in una maniera completamente dal modello BSM

- Il metodo è basato sul formalismo degli operatori NR ("Semplice" Meccanica Quantistica)
- esso incorpora nelle risposte nucleari tutti i necessari ingredienti astrofisica e del rivelatore

Tools for model-independent bounds in direct dark matter searches

Data and Results from 1307.5955 [hep-ph], JCAP 10 (2013) 019.

If you use the data provided on this site, please cite: M.Cirelli, E.Del Nobile, P.Panci, "Tools for model-independent bounds in direct dark matter searches", arXiv 1307.5955, JCAP 10 (2013) 019.

This is Release 3.0 (April 2014). Log of changes at the bottom of this page.

Test Statistic functions:

The TS.m file provides the tables of TS for the benchmark case (see the paper for the definition), for the six experiments that we consider (XENON100, CDMS-Ge, COUPP, PICASSO, LUX, SuperCDMS).

Rescaling functions:

The <u>Y.m</u> file provides the rescaling functions $Y_{ii}^{(N,N')}$ and $Y_{ii}^{lr(N,N')}$ (see the paper for the definition).

Sample file:

The Sample.nb notebook shows how to load and use the above numerical products, and gives some examples.

Log of changes and releases:

[23 jul 2013] First Release.
[08 oct 2013] Minor changes in the notations in Sample.nb, to match JCAP version. No new release.
[25 nov 2013] New Release: 2.0. Addition of LUX results. This release corresponds to version 3 of <u>1307.5955</u> (with Addendum).
[03 apr 2014] New Release: 3.0. Addition of SuperCDMS results. This release corresponds to version 4 of <u>1307.5955</u> (with two Addenda).

Contact: Eugenio Del Nobile <delnobile@physics.ucla.edu>, Paolo Panci cpanci@iap.fr>

http://www.marcocirelli.net/NROpsDD.html

Conclusioni

Ho descritto un metodo e un set completo di strumenti numerici per derivare i limiti da alcuni esperimenti in Rivelazione diretta in una maniera completamente dal modello BSM

- Il metodo è basato sul formalismo degli operatori NR ("Semplice" Meccanica Quantistica)
- esso incorpora nelle risposte nucleari tutti i necessari ingredienti astrofisica e del rivelatore

Tools for model-independent bounds in direct dark matter searches

Data and Results from 1307.5955 [hep-ph], JCAP 10 (2013) 019.

If you use the data provided on this site, please cite: M.Cirelli, E.Del Nobile, P.Panci, "Tools for model-independent bounds in direct dark matter searches", arXiv 1307.5955, JCAP 10 (2013) 019.

This is Release 3.0 (April 2014). Log of changes at the bottom of this page.

Test Statistic functions:

The TS.m file provides the tables of TS for the benchmark case (see the paper for the definition), for the six experiments that we consider (XENON100, CDMS-Ge, COUPP, PICASSO, LUX, SuperCDMS).

Rescaling functions:

The <u>Y.m</u> file provides the rescaling functions $Y_{ii}^{(N,N')}$ and $Y_{ii}^{lr(N,N')}$ (see the paper for the definition).

Sample file:

The Sample.nb notebook shows how to load and use the above numerical products, and gives some examples.

Log of changes and releases:

[23 jul 2013] First Release.
[08 oct 2013] Minor changes in the notations in Sample.nb, to match JCAP version. No new release.
[25 nov 2013] New Release: 2.0. Addition of LUX results. This release corresponds to version 3 of 1307.5955 (with Addendum).
[03 apr 2014] New Release: 3.0. Addition of SuperCDMS results. This release corresponds to version 4 of 1307.5955 (with two Addenda).

Contact: Eugenio Del Nobile <delnobile@physics.ucla.edu>, Paolo Panci cpanci@iap.fr>

http://www.marcocirelli.net/NROpsDD.html