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Priorità Sperimentali nella Ricerca diretta di MO:

I rivelatori devono lavorare in profondità al fine di eliminare il più possibile il 
fondo dei raggi cosmici in superficie presenti nella superficie terrestre

Essi devono usare schermi attivi e materiali molto puri contro la radiazione  
residua nel tunnel  (prinipalmente        and neutroni)

Ricerca Diretta: Overview

I segnali di MO sono dei fenomeni molto rari (conteggi minori di 1 cpd/kg/keV)

Essi devono distinguere gli scattering multipli (la MO infatti non interagisce 
due volte nel rivelatore essendo debolmente interagente)
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La rivelazione diretta di MO ha lo scopo di misurare i rinculi nucleari indotti da:

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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positrons, electrons, neutrinos, gamma rays...
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections
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(black).
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and redefine the cN
i as independent from q. The most notable cases of q dependence is

featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:

Olr
1 =

1

q2
ONR

1 , Olr
5 =

1

q2
ONR

5 ,

Olr
6 =

1

q2
ONR

6 , Olr
11 =

1

q2
ONR

11 .
(3)

According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as

|MT |2 =
m2

T

m2
N

12⇥

i,j=1

⇥

N,N �=p,n

cN
i cN �

j F (N,N �)
i,j . (4)

The F (N,N �)
i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
recoil energy ER = q2/2mT .
We can then construct the di�erential scattering cross section, which reads, in the non-
relativistic case,

d⇧T

dER
(v, ER) =

1

32⇤

1

m2
�mT

1

v2
|MT |2 . (5)

To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then

dRT

dER
=

⇥T

mT

⌅�
m�

⇤

vmin(ER)

d3v v fE(✓v)
d⇧T

dER
(v, ER) , (6)

where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =

⌅
mT ER/2µ2

T (for elastic scattering), where

2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
3⇥T = 103NAmT �T /Ā, where NA = 6.022� 1023 is Avogadro’s number, �T are the numeric abundances

and Ā ⇥
�

T �T AT .
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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and redefine the cN
i as independent from q. The most notable cases of q dependence is

featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:
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According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as
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i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
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To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then
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where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =
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mT ER/2µ2
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2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
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we do not consider the operator labeled ONR
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as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR
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Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):
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i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
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1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall

13

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l c
ent
er
r ⇥
0 k
pc

Ga
l e
dg
e r
⇥
20
kp
c

10�1 1 10 102 103 104 105
10�17

10�16

10�15

10�14

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

Gal center r ⇥ 0 kpc

Gal edge r ⇥ 20 kpc

10�18
10�17
10�16
10�15
10�14
10�13
10�12
10�11
10�10
10�9
10�8
10�7
10�6

En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�GeV⇧

se
c⇥

Thomson approx
at the Earth

Ea
rth

Ga
l e
dg
e z
⇥
15
kp
c

10�1 1 10 102 103 104 105

10�17

10�16

10�15

e⇤ energy E �GeV⇥En
er
gy
lo
ss
co
ef
fic
ie
nt
b
�1⇧sec

⇥

E2 b⇤E⌅
Earth

1 kpc4 kpc

Gal edge z ⇥ 15 kpc

Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Figure 3: Comparison between spectra with (continuous lines) and without EW corrections

(dashed). We show the following final states: e+ (green), p̄ (blue), � (red), ⇥ = (⇥e+⇥µ+⇥� )/3

(black).
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Vi presenterò un metodo per “scalare” un limite derivato per un’interazione 
di prova al fine di ottenere un bound per qualsiasi tipo di interazione 

Main added value features:

    compare different MCs

    include EW corrections

    improved         propagation

    improved ICS    -ray computation
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Figure 2: Comparison between Monte Carlo results: Pythia is the continuous line, Her-
wig is dashed. Photons (red), e± (green), p̄ (blue), � = �e + �µ + �� (black).

where K is the kinetic energy of the final-state stable hadrons/leptons/photons in the rest
frame of D . We shall plot the particle multiplicity as a function of the logarithmic energy
fraction, i.e. dN/d log x; our spectra will be normalized to the average multiplicity in the
simulated high-statistics event sample. Also, as pointed out before, this comparison will
be carried out for production of unpolarized particles and without including any e�ect of
final-state weak boson radiation.

An example of the comparison of the DM fluxes from Pythia and Herwig is presented
in Fig. 2, where we show the photon, electron, antiproton and neutrino dN/d log x spectra
for the channels DM DM ⇤ qq̄, gg, W+W� and ⇥+⇥�. In Fig. 2 we have set the DM mass
to MDM = 1 TeV, but we can anticipate that similar dN/d log x hold for all DM masses
MDM ⇥ MZ , mt. Astrophysical experiments are currently probing K <� 100 GeV, whose
corresponding range of x depends on the chosen MDM; in particular, the low-x tails mostly
determine the DM signals if MDM is very large. Overall, we note the following features:

• For the qq̄ modes there is a reasonable agreement between Pythia and Herwig,
for all final-state particles and through the whole x spectrum, including the low-
energy tails. In fact, although the centre-of-mass energy has been increased to 2
TeV, the D ⇤ qq̄ is similar to Z/�⇥ ⇤ qq̄ processes at LEP, which were used when
tuning the Herwig and Pythia user-defined parameters. Nevertheless, we note some
discrepancy, about 20%, especially in the neutrino spectra, as Pythia yields overall
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Figure 5: Energy loss coe�cient function for electrons and positrons in the Milky Way.
Left panel: at several locations along the galactic radial coordinate r, right panel: above (or below)
the location of the Earth along the coordinate z. The dot points at the value of �� (see next
subsection).

We compute b(E, �x) by The profile of the magnetic field in the Galaxy is very uncertain
and we adopt the conventional one

B(r, z) = B0 exp[�(r � r�)/rB � |z|/zB] (10)

as given in [108], with B0 = 4.78 µG, rB = 10 kpc and zB = 2 kpc. With these choices,
the dominant energy losses are due to ICS everywhere, except in the region of the Galactic
Center and for high e± energies, in which case synchrotron losses dominate. All in all,
the b(E, �x) function that we obtain is sampled in fig. 5 and given in numerical form on
the website [29]. In the figure, one sees the E2 behaviour at low energies changing into a
softer dependence as the energy increases (the transition happens earlier at the GC, where
starlight is more abundant, and later at the periphery of the Galaxy, where CMB is the
dominant background). At the GC, it eventually re-settles onto a E2 slope at very high
energies, where synchrotron losses dominate.

The di�usion coe⇥cient function K is also in principle dependent on the position, since
the distribution of the di�usive inhomogeneities of the magnetic field changes throughout
the galactic halo. However, a detailed mapping of such variations is prohibitive: e.g. they
would have di�erent features inside/outside the galactic arms as well as inside/outside the
galactic disk, so that they would depend very much on poorly known local galactic geogra-
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Limiti Indipendenti dal Modello nella Rivelazione Diretta

Per esempio i limiti dipendenti dal modello presentati dalle collaborazione 
sperimentali potranno esser applicati anche ad altri tipi di modello
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eventi per qualsiasi interazione, la quale fisica particellare è incapsulata nei coefficienti cNi
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Interazione di Prova
and redefine the cN

i as independent from q. The most notable cases of q dependence is
featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:

Olr
1 =

1

q2
ONR

1 , Olr
5 =

1

q2
ONR

5 ,

Olr
6 =

1

q2
ONR

6 , Olr
11 =

1

q2
ONR

11 .
(3)

According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as

|MT |2 =
m2

T

m2
N

12⇥

i,j=1

⇥

N,N �=p,n

cN
i cN �

j F (N,N �)
i,j . (4)

The F (N,N �)
i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
recoil energy ER = q2/2mT .
We can then construct the di�erential scattering cross section, which reads, in the non-
relativistic case,

d⇧T

dER
(v, ER) =

1

32⇤

1

m2
�mT

1

v2
|MT |2 . (5)

To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then

dRT

dER
=

⇥T

mT

⌅�
m�

⇤

vmin(ER)

d3v v fE(✓v)
d⇧T

dER
(v, ER) , (6)

where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =

⌅
mT ER/2µ2

T (for elastic scattering), where

2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
3⇥T = 103NAmT �T /Ā, where NA = 6.022� 1023 is Avogadro’s number, �T are the numeric abundances

and Ā ⇥
�

T �T AT .
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].

6

Interazione di contatto Interazioni LR Tra gli operatori NR abbiamo scelto il più semplice: 
(la MO interagisce solo con i protoni con una sezione d’urto costante)
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and redefine the cN

i as independent from q. The most notable cases of q dependence is
featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:
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According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as
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T
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The F (N,N �)
i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
recoil energy ER = q2/2mT .
We can then construct the di�erential scattering cross section, which reads, in the non-
relativistic case,

d⇧T

dER
(v, ER) =
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To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then

dRT

dER
=

⇥T

mT

⌅�
m�

⇤

vmin(ER)

d3v v fE(✓v)
d⇧T

dER
(v, ER) , (6)

where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =

⌅
mT ER/2µ2

T (for elastic scattering), where

2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
3⇥T = 103NAmT �T /Ā, where NA = 6.022� 1023 is Avogadro’s number, �T are the numeric abundances
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�

T �T AT .
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
under Galileo velocity transformations, and translational symmetry is also respected given
the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
invariant operators can be constructed with ⇣v, ⇣q, ⇣sN , and ⇣s� [5], which include all possible
spin configurations. The scattering amplitude can then be written as a linear combination
of these operators, with coe⌅cients that may depend on the momenta only through the q2

or v2 scalars (⇣q · ⇣v = �q2/2µN by energy conservation, with µN the DM-nucleon reduced
mass). Before introducing these NR operators, however, let us notice that, instead of ⇣v, the
variable ⇣v� ⇧ ⇣v+⇣q/2µN is somehow more suitable to write the amplitude. ⇣v� is Hermitian,
in a sense explained in Ref. [3], while ⇣v is not, and moreover one has ⇣v� · ⇣q = 0. Following
Ref. [3] we will therefore use, in the description of the NR operators, ⇣v� instead of ⇣v. The
NR operators considered in this work are

ONR
1 = ,

ONR
3 = i⇣sN · (⇣q ⇤ ⇣v�) , ONR

4 = ⇣s� · ⇣sN ,

ONR
5 = i⇣s� · (⇣q ⇤ ⇣v�) , ONR

6 = (⇣s� · ⇣q)(⇣sN · ⇣q) ,

ONR
7 = ⇣sN · ⇣v� , ONR

8 = ⇣s� · ⇣v� ,

ONR
9 = i⇣s� · (⇣sN ⇤ ⇣q) , ONR

10 = i⇣sN · ⇣q ,

ONR
11 = i⇣s� · ⇣q , ONR

12 = ⇣v� · (⇣s� ⇤ ⇣sN) .

(1)

As in [3], we do not consider the full set of independent operators (for instance, as apparent,
we do not consider the operator labeled ONR

2 in [3], nor those above the 12th); however,
as we will see in Sec. 5, the operators listed above are enough to describe the NR limit
of many of the relativistic operators often encountered in the literature. We obtained the
form factor for the operator ONR

12 from the authors of [3] (private communication / cite
a paper not out yet). •

Given a model for the interaction of DM with the fundamental particles of the SM, we
can build the non-relativistic e⇥ective Lagrangian describing DM-nucleon interactions as
follows. Starting from the fundamental Lagrangian, the matrix element for a scattering
process at the nucleon level 1 can be expressed as a linear combination of the operators (1):

MN =
12�

i=1

cN
i (�, m�) ONR

i . (2)

The coe⌅cients cN
i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
cN
1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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Interazione di contatto Interazioni LR Tra gli operatori NR abbiamo scelto il più semplice: 
(la MO interagisce solo con i protoni con una sezione d’urto costante)

|Mp,B| = �BONR
1

EM del modello Prova

Eventi per il modello di prova:

N th
k,B = X �2

B F̃ (p,p)
1,1 (m�, k)

cp1 = �B cN1 = 0, while

Parametro libero del modello



Le funzioni TS che permettono agli 
utenti di derivare il limite       al CL       

desiderato possono esser scaricate da:
http://www.marcocirelli.net/NROpsDD.html

�CL
B

Determinazione del valore massimo del parametro      permesso dai dati exp.�B

TS(�
B

,m�) = �2 ln
⇣
L( ~Nobs |�

B

)/L
bkg

⌘Test Statistico (TS): Likelihood Ratio 

per ciascun valore della massa     , il limite minimo  
al 90% CL può esser ottenuto dalla relazione: 

TS(�B,m�) = �2
90%CL ' 2.71

m�

bkg.  
likelihood

likelihood per ottenere il  
set dei dati osservati

Interazione di Prova
and redefine the cN

i as independent from q. The most notable cases of q dependence is
featured perhaps in long range interactions, where the exchange of a massless mediator
is responsible for the interaction between the DM and the nucleons. The di�erential cross
section displays in this case negative powers of q, thus enhancing the scattering rate at lower
exchanged momenta. Assuming that the massless mediator responsible for the interaction
is the Standard Model photon2, the most relevant cases are a DM with small but nonzero
electric charge, electric dipole moment or magnetic dipole moment. As we shall see in more
detail in Sec. 5, these interactions feature all a 1/q2-dependence [4]. In addition to those in
eq. (1), we will therefore consider also the following long range operators:

Olr
1 =

1

q2
ONR

1 , Olr
5 =

1

q2
ONR

5 ,

Olr
6 =

1

q2
ONR

6 , Olr
11 =

1

q2
ONR

11 .
(3)

According to Eq. (55) of [3] we can then write the spin-averaged amplitude squared for
scattering o� a target nucleus T with mass mT as

|MT |2 =
m2

T

m2
N

12⇥

i,j=1

⇥

N,N �=p,n

cN
i cN �

j F (N,N �)
i,j . (4)

The F (N,N �)
i,j (v, ER, T ) are the form factors provided in the appendices of [3], and depend

critically on the type of scattering nucleus T ; they are also function of m�, v and the nuclear
recoil energy ER = q2/2mT .
We can then construct the di�erential scattering cross section, which reads, in the non-
relativistic case,

d⇧T

dER
(v, ER) =

1

32⇤

1

m2
�mT

1

v2
|MT |2 . (5)

To write the scattering rate we need to take into account the general case in which the
detector is composed of di�erent nuclides (these can be di�erent isotopes of the same
specie, as well as di�erent kind of nuclei). We take the numeric abundances of di�erent
nuclides used in Direct Detection searches from Table II of [6], and convert them into mass
fractions3 ⇥T for each type of target nucleus T , with mass number AT , in the detector. The
di�erential rate for DM scattering o� a specific target, expressed in cpd (counts per day)
per kilogram per keV, is then

dRT

dER
=

⇥T

mT

⌅�
m�

⇤

vmin(ER)

d3v v fE(✓v)
d⇧T

dER
(v, ER) , (6)

where ⌅� ⇤ 0.3 GeV/cm3 is the DM energy density at the Earth’s location and fE(✓v) is
the DM velocity distribution in the Earth’s frame. vmin(ER), the minimum velocity with
which a DM particle can scatter o� a nucleus with a given recoil energy ER, also depends
on the target nucleus via the relation vmin =

⌅
mT ER/2µ2

T (for elastic scattering), where

2As we shall see in Sec. 5, gluons behave di�erently and need separate treatment.
3⇥T = 103NAmT �T /Ā, where NA = 6.022� 1023 is Avogadro’s number, �T are the numeric abundances

and Ā ⇥
�

T �T AT .
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amplitude will then be a rotationally invariant function of these variables; invariance un-
der Galilean boosts is ensured by the fact that these vectors are by themselves invariant
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the absence of a reference frame/point in space. In this regard, a basis of 16 rotationally
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i , where N = p, n can be proton or neutron, are function of the parameters

of the model, such as couplings, mediator masses and mixing angles, (collectively denoted)
�, the DM mass m� and the nucleon mass mN . For example, if the scattering between
a fermonic DM ⇤ and the nucleon N is described by the (high-energy) scalar operator
gN/�2 ⇤̄⇤ N̄N , the only non-relativistic operator involved is ONR

1 , and its coe⌅cient is
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1 = 4 gNm�mN/�2. The general way to determine the coe⌅cients entering the matrix

element (2), starting from high-energy e⇥ective operators, is described explicitly in Sec. 5.
As anticipated above, the cN

i can in principle also depend on the exchanged momentum
squared q2; in this case we factorize the momentum dependence outside of the coe⌅cients

1Note that this quantity coincides with what is denoted as a Lagrangian L in [3,4], e.g. in eq. (55) of [3].
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Funzioni di “scaling”

TS(�,m�) = TS(�B,m�)

Per gli Exp. con risultati nulli si ha:
X

k

N th
k (�,m�) =

X

k

N th
k,B(�B,m�)

Per qualsiasi modello i limiti devono 
esser disegnati allo stesso CL:
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Ho descritto un metodo e un set completo di strumenti numerici per derivare i limiti da 
alcuni esperimenti in Rivelazione diretta in una maniera completamente dal modello BSM

- Il metodo è basato sul formalismo degli operatori NR (“Semplice” Meccanica Quantistica) 
- esso incorpora nelle risposte nucleari tutti i necessari ingredienti astrofisica e del rivelatore

Conclusioni
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