Current experiments on $0\nu\beta\beta$ in Germanium GERDA and MAJORANA

Katharina von Sturm

Università degli Studi di Padova INFN Sezione di Padova

 $9^{\rm th}$ April, 2014

Katharina von Sturm (Uni Padova)

 $0
u\beta\beta$ decay in ⁷⁶Ge

9th April, 2014 1 / 24

Table of Contents

- 1 The $0\nu\beta\beta$ and its implications
- 2 $0
 u\beta\beta$ in Germanium
- **3** The GERDA and MAJORANA experiments
 - The MAJORANA experiment Goal, Setup, Status
 - The GERDA experiment
 - GERDA: Phase I results
 - GERDA: Transition to Phase II

Some open questions we try to shed light on

- What is the mass of the neutrinos?
- Normal or inverted neutrino mass hierarchy?
- Are neutrinos Majorana or Dirac particles?
- What physics is there beyond the Standard Model (SM)?

Ingredients for the $0 u\beta\beta$

$$\mathcal{N}(\mathsf{A},\mathsf{Z})
ightarrow \mathcal{N}(\mathsf{A},\mathsf{Z}{+}2) + 2e^- + 2\nu_e$$

- Second order decay: β decay forbidden but lower energetic state exists
- Allowed in the SM experimentally observed in ca. 10 isotopes

Ingredients for the 0 uetaeta

$$\mathcal{N}(\mathsf{A},\mathsf{Z})
ightarrow \mathcal{N}(\mathsf{A},\mathsf{Z}{+}2) + 2e^- + 2\nu_e$$

- Second order decay: β decay forbidden but lower energetic state exists
- Allowed in the SM experimentally observed in ca. 10 isotopes

$$\mathcal{N}(\mathsf{A},\mathsf{Z})
ightarrow \mathcal{N}(\mathsf{A},\mathsf{Z}{+}2) + 2e^{-}$$

- Lepton number violating \rightarrow requires a $\Delta L = 2$ operator
- Can be a Majorana mass but also any other $\Delta L = 2$ process
- E.g. Higgs triplet, SUSY which gives an important connection to LHC and lepton flavor violation

Ingredients for the $0\nu\beta\beta$

Life time of $0\nu\beta\beta$: $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}^{(0)}g_A^4|M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta}\rangle}{m_e}\right)^2$

eff. Majorana ν mass:

$$\langle m_{\beta\beta} \rangle = |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 \cdot e^{i\Phi^2} + |U_{e3}|^2 m_3 \cdot e^{i\Phi^3}$$

$$Q_{etaeta}=2039\,{
m keV}$$

Katharina von Sturm (Uni Padova)

3

Ingredients for the $0\nu\beta\beta$

Life time of
$$0
uetaeta$$
: $(T_{1/2}^{0
u})^{-1} = G_{0
u}^{(0)}g_A^4|M_{0
u}|^2 \left(rac{\langle m_{etaeta}
angle}{m_e}
ight)^2$

eff. Majorana ν mass:

$$\langle m_{\beta\beta} \rangle = |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 \cdot e^{i\Phi^2} + |U_{e3}|^2 m_3 \cdot e^{i\Phi^3}$$

K.K. claim 2004 [Phys.Lett. B586 198]

- 71.7 kg yr
- 28.75 ± 6.86 signal events

•
$$T_{1/2}^{0\nu} = 1.9^{+0.37}_{-0.23} \cdot 10^{25} \, {
m yr}$$

$$Q_{etaeta}=2039\,{
m keV}$$

Ingredients for the $0\nu\beta\beta$

Life time of
$$0
uetaeta$$
: $(T_{1/2}^{0
u})^{-1} = G_{0
u}^{(0)}g_A^4|M_{0
u}|^2 \left(rac{\langle m_{etaeta}
angle}{m_e}
ight)^2$

eff. Majorana ν mass:

$$\langle m_{\beta\beta}
angle = |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 \cdot e^{i\Phi^2} + |U_{e3}|^2 m_3 \cdot e^{i\Phi^3}$$

$$Q_{etaeta}=2039\,{
m keV}$$

K.K. claim 2004 [Phys.Lett. B586 198]

- 71.7 kg yr
- 28.75 ± 6.86 signal events

•
$$T_{1/2}^{0
u} = 1.9^{+0.37}_{-0.23} \cdot 10^{25} \, {
m yr}$$

K.K. claim 2006 [Mod Phys Lett A21]

- \rightarrow Ann. Phys. 525 (2013) 269
 - Missing efficiency of PSD
 - Uncentainty on signal counts smaller than poissonian
 - \rightarrow $T_{1/2}^{0\nu}$ central value and errors incorrect

Why using Germanium-76?

Zoo of double beta isotopes: ⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶7r ¹⁰⁰Mo ¹¹⁶Cd ¹²⁸Te ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd ²³⁸U

Pros

- Source and detector at the same time \rightarrow detection efficiency about 90%
- Established detector technology
- High purity detectors have a low intrinsic background
- Energy resolution is extraordinary, about $\approx 2\%$
- Pulse shape analysis for background reduction using PPC or BEGe geometry
- Can test K.K. claim without depending on the matrix element

Cons

- Rather long and costly process to get a large active detector mass
- Natural abundance of ⁷⁶Ge is $\approx 8\% \rightarrow$ has to be enriched
- Q-value of 2039 keV is below ²⁰⁸TI line of $2.6 \, \text{MeV} \rightarrow \text{background}$ from Compton scattered gammas

- 4 回 ト - 4 回 ト

 $0\nu\beta\beta$ in Germanium

Detector geometries - Coax, BEGe, PPC

Coax

BEGe

PPC

The GERDA and MAJORANA experiments

Current $0\nu\beta\beta$ Germanium experiments

MAJORANA DEMONSTRATOR

- Located at SURF (South Dakota, USA)
- 4300 m.w.e
- Status: R&D project under construction

Gerda

- Located at LNGS (Abruzzo, Italy)
- 3500 m.w.e.
- Status: Finished Phase I data taking result puplished last year, currently transition to Phase II

 $\rm MAJORANA$ and $\rm GERDA$ are collaborating and are sharing information regarding (hopefully tonne-scale) future experiments.

Katharina von Sturm (Uni Padova)

 $0\nu\beta\beta$ decay in ⁷⁶Ge

9th April, 2014

8 / 24

$\rm MAJORANA$ - R&D goals

The MAJORANA DEMONSTRATOR is an R&D project for a future tonne-scale Ge experiment

Technical Goals

- Demonstrate achievability of BI ≈ 3 cts/(ROI t yr)
- Feasibility of constructing and operating Ge modular detector array
- Optimize processes and costs for future tonne-scale experiment

Science Goals

• Exploiting the low energy range to search for Dark Matter and Axions

To be sensitive to the whole inverted hierarchy a tonnescale experiment is needed!

$\operatorname{Majorana}$ - Setup

- Vacuum cryostats surrounded by a compact shield
- Up to 30 kg of enriched Ge detectors PPC geometry (ORTEC)
- Ultra-pure materials e.g. underground electro-formed copper, material screening

MAJORANA - Experimental phases

Three phases

- **1** Prototype cryostat containing 2 strings of natGe BEGe detectors to test and integrate the different components (In use)
- **2** Cryostat 1 with 7 strings of enrGe PPC detectors for the commissioning phase (Summer 2014)
- **3** Cryostat 2 with half natGe and half enrGe completes the setup Final setup will contain 30 kg of 86% enrGe (Summer 2015)

$\operatorname{Majorana}$ - Status

Assembly

- All components in the lab installed (Shield floor, LN system, assembly table, air bearing system, glove boxes, localized clean space)
- Development of low background front end electronics
- Electro-forming lab in operation since 2011
- ICP-MS (mass spectrometry) sensitivity for U and Th in copper approaching sub $\mu Bq/kg$ level

$\operatorname{Majorana}$ - Status

Detectors

- Of 42.5 kg enrGe 98% transformed into metal
- 20 kg in 33 detectors natGe BEGe type and 20 kg in 23 detectors PPC type in the UG-lab
- MALBEK detector R&D: Customized BEGe detector to study optimal point contact geometry, test DAQ, validate background model, exploit low-energy sensitivity of MJD

GERDA Phase I - Goals

- Test K.K. $0\nu\beta\beta$ claim without depending on the calculation of the matrix element and the any assumption on the $\Delta L = 2$ operator mediating the decay
- Higher sensitivity than the Heidelberg-Moscow (HdM) experiment
- Reach a background index $BI \approx 10^{-2} {
 m cts}/({
 m kg \, keV \, yr})$
- Get an exposure of about 20 kg yr
- Improve the background suppression using pulse shape discrimination techniques
- Developments for Phase II (e.g. veto using scintillation of LAr)

(日) (同) (日) (日) (日)

GERDA - Setup

- Bare Ge detectors (semi-coaxial from HdM and IGEX and BEGe) submerged in 64 m³ LAr
- Copper lined stainless steel cryostat
- 3 m water shield instrumented with PMTs and used as Water Cerenkov Muon Veto
- Plastic scintillator veto on the roof above the neck (weak spot of the water veto)

GERDA Phase I - Data taking and Data Cuts

Data taking (November 2011 - May 2013)

- Weekly ²²⁸Th energy calibration and test pulser stability monitoring
- Duty cycle 88%
- In total 3 coaxial natGe, 8 coaxial enrGe and 5 BEGe enrGe detectors
- Total physics mass: 14.6 kg (coaxial) + 3.0 kg (BEGe)

Energy reconstruction and cuts

- Energy is reconstructed with a semi Gaussian filter which is fast and robust
- Detectors with high leakage current and high instabilities were excluded from data analysis
- Cuts: Coincidence with muons, signal in more than one detector and events within 1 ms in one detector (BiPo cut)

Katharina von Sturm (Uni Padova)

- First 5.04 kg yr were used to evaluate the half-life of the $2\nu\beta\beta$ decay
- Data from 6 refurbished semi-coaxial enrGe detectors from the HdM and IGEX experiments
- Binned maximum likelihood approach
- Model contains $2\nu\beta\beta$, ⁴²K (LAr) ⁴⁰K ²¹⁴Bi (holders)
- Fit region from $600 1800 \, \text{keV}$
- $2\nu\beta\beta$ half-life important for understanding of $0\nu\beta\beta$ (e.g. nuclear matrix element)

The GERDA Collaboration et al 2013 J.Phys.G: Nucl.Part.Phys.40 035110 doi:10.1088/0954-3899/40/3/035110

Data selection

 Not considered: natGe, 2 coaxial enrGe (high leakage current), 1 BEGe (instabilities)

Katharina von Sturm (Uni Padova)

Data analysis

- All three data sets analyzed unsummed and with independent background and resolution
- Blind analysis: 40 keV window around $Q_{\beta\beta} \rightarrow$ number, energy and waveform unavailable before freezing of parameters
- Validated background model and PSD before unblinding
- Analysis of unblinded data with frozen parameters

Background model

• Flat around $Q_{\beta\beta}$ (1930 keV-2190 keV) apart from lines at 2104 keV & 2119 keV

BEGe PSD

- A/E vs. Energy cut accepts 0.92 ± 0.02 signal-like and rejects 80% background
- A/E parameter has an exponential time drift which was corrected

BEGe PSD

- A/E vs. Energy cut accepts 0.92 ± 0.02 signal-like and rejects 80% background
- A/E parameter has an exponential time drift which was corrected

Coaxial PSD

- TMVA neural network with 2 layers of 51 and 50 nods
- Input: time when pulse reaches 1%, 3% ... 99% of maximum
- Two independent cross check analysis performed
- Cuts 45% of background → all rejected by at least one cross check method, 90% by all 3 methods
- Efficiency for DEP $0.90^{+0.05}_{-0.09}$ crosscheck with $2\nu\beta\beta$ effeciency 0.85 ± 0.02

▲ 同 ▶ → 三 ▶

Final result

- $\bullet \ {\rm Exposure} \rightarrow 21.6 \, {\rm kg} \, {\rm yr}$
- Phase I golden + PSD: $BI = (11 \pm 2) \cdot 10^{-3} \operatorname{cts}/(\operatorname{keV}\operatorname{kg}\operatorname{yr})$
- med. sens. $T_{1/2}^{0
 uetaeta}>2.4\cdot10^{25}\,{
 m yr}$
- In ROI $Q_{\beta\beta} \pm 5 \text{ keV}$: 7 events 6 coaxial 1 BEGe - in agreement with expected 5.1 ± 0.5
- PSD classifies 3 coaxial and 1 BEGe as background
- Limit (using PSD) disfavours K.K. 2004 claim strongly

$$T_{1/2}^{0
uetaeta}>2.1\cdot10^{25}\,{
m yr}$$
 90% C.L.

Final result

- $\bullet \ {\rm Exposure} \rightarrow 21.6 \, {\rm kg} \, {\rm yr}$
- Phase I golden + PSD: $BI = (11 \pm 2) \cdot 10^{-3} \operatorname{cts}/(\operatorname{keV} \operatorname{kg} \operatorname{yr})$
- med. sens. $T_{1/2}^{0
 uetaeta}>2.4\cdot 10^{25}\,{
 m yr}$
- In ROI $Q_{\beta\beta} \pm 5 \text{ keV}$: 7 events 6 coaxial 1 BEGe - in agreement with expected 5.1 ± 0.5
- PSD classifies 3 coaxial and 1 BEGe as background
- Limit (using PSD) disfavours K.K. 2004 claim strongly

GERDA Phase II - Goals

- Improve the sensitivity $T_{1/2}^{0
 u}\propto a\epsilon\sqrt{rac{Mt}{\sigma B}}$
- Achieve $B = 10^{-3} \text{ cts}/(\text{keV kg yr})$
- Augment the detector mass M
- Acumulate Mt pprox 100 kg yr of data
- Explore $T_{1/2}^{0
 uetaeta}>10^{26}{
 m yr}$
- Find $0\nu\beta\beta$ decay!

GERDA Phase II - Current status

- Data taking stopped in July last year
- Preparations for Phase II
- Augmented detector mass \rightarrow 30 BEGe detectors ready
- Exchange the cryostat lock \rightarrow space for new detectors
- New front end electronics and cabeling \rightarrow improved radio purity and lower Rn emanation
- Use LAr scintillation light as veto \rightarrow hybrid solution PMTs and fibers+SiPMs
- Start commissioning pprox second half 2014

Summary

Majorana

- Majorana still under construction
- Completion of experimental setup in summer 2015

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary

Majorana

- Majorana still under construction
- Completion of experimental setup in summer 2015

Gerda

- Gerda background goal achieved $B \approx 10^{-2} {\rm cts}/({\rm kg \, keV \, yr})$
- Phase I result of Gerda strongly disfavours K.K. claim

 $\begin{array}{ll} \mbox{Gerda only:} & T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} \, \mbox{yr } 90\% \mbox{ C.L.} \\ \mbox{Gerda+HdM+IGEX:} & T_{1/2}^{0\nu\beta\beta} > 3.0 \cdot 10^{25} \, \mbox{yr } 90\% \mbox{ C.L.} \end{array}$

- Gerda currently in transition to Phase II
- Similar physics goals of Majorana and Gerda
- $B pprox 10^{-3} {
 m cts}/({
 m kg\,keV\,yr})$
- Explore $T_{1/2}^{0
 uetaeta}>10^{26}{
 m yr}$

過 ト イヨ ト イヨト

THANK YOU FOR YOUR ATTENTION!

3

<ロ> (日) (日) (日) (日) (日)

Summary

GERDA - Onbb events (L. Pandola)

	data set	detector	energy	date		PSD	ANN	A/E	Cut Three	$_{\rm shold}$
			[keV]			passed				
	golden	ANG 5	2041.8	18-Nov-2	$011\ 22:52$	no	0.344		0.366)
Γ	silver	ANG 5	2036.9	23-Jun-2	012 23:02	yes	0.518		0.366	
	golden	RG 2	2041.3	16-Dec-2	012 00:09	yes	0.682		0.364	
_	BEGe	GD32B	2036.6	28-Dec-2	$012 \ 09:50$	no		0.750	$0.965 \div 1$.070
	golden	RG 1	2035.5	29-Jan-2	013 03:35	yes	0.713		0.372	
	golden	ANG 3	2037.4	02-Mar-2	$2013 \ 08:08$	no	0.205		0.345	<u>, </u>
	golden	RG 1	2041.7	27-Apr-2	$013\ 22:21$	no	0.369		0.372	1
								Exr	ected from	n
	data set	$\mathcal{E}[kg \cdot yr]$	$\langle \epsilon \rangle$		\mathbf{bkg}	$BI^{\dagger})$	cts	hack	around or	hv
	without P	SD						Duch	ground of	iiy
	golden	17.9	0.688	3 ± 0.031	76	18 ± 2	5	3.	3	
	silver	1.3	0.688	3 ± 0.031	19	63^{+16}_{-14}	1	0	8	
	BEGe	2.4	0.720	0 ± 0.018	23	42^{+10}_{-8}	1	1	0	
ſ	with PSD							±.	0	
1	aolden	17.9	0.619	+0.044	45	11 ± 2	2	2.	0	
	silver	1.3	0.619	+0.044	9	30^{+11}	1	0.	4	
	BEGe	2.4	0.663	+ 0.070	3	5+4	Ô	0	1	
	DEGE	2.1	0.005	1 0.022	5	0-3		0.	-	
[†]) in units of 10^{-3} cts/(keV·kg·yr).										
<ロ> <置> < 置> < 置→ < 置→ < 置→ < 置 → の										
ĸ	atharina von Stu	rm (Uni Pad	ova)	$0\nu\mu$	$\beta\beta$ decay in 70	⁵ Ge		9^{th}	April, 2014	26 / 2