Associated production of heavy flavors and W,Z bosons at CMS

Vieri Candelise

Università di Trieste & INFN Trieste

IFAE2014 - Incontri di Fisica delle Alte Energie L'Aquila, 09/04/2014

Outline

• Physics of W/Z + heavy flavors at LHC

W

- charm + W differential cross section @ 7 TeV
- beauty + W cross section @ 7 TeV

[<u>arXiv:1312.6608</u> JHEP 02 (2014) 013]

[arXiv:1312.6608 submitted to PLB]

Z

• beauty + Z cross sections @ 7 TeV

[arXiv:1402.1521 submitted to JHEP]

- beauty + Z differential cross sections @ 8 TeV [endorsed as a PhD Thesis]
- Summary and perspectives

Physics of W/Z + heavy flavors at LHC

perturbative QCD

- *Wc* : access the strange quark content of the proton
- Zb : understand the production mechanism
 - tree level vs NLO
 - $4FS (m_b \neq 0) vs 5FS (m_b = 0)$

• PDF studies, NLO effects

<u>Electroweak Measurements</u>

- Higgs background HZ, HW
- Differential Cross sections
- Zb polarization asymmetry $\sin^2 \Theta_W^{\text{eff}}$, couplings

Beyond the Standard Model

- 4th generation heavy *b'*,*t'* quarks decaying to *Vb*
- supersymmetry with *sbottoms*

- Multi Higgs-doublets Models
- potential new physics with $A^{pol}(Zb)$

charm + W

direct access to the strange content of the proton

 $\sqrt{s} = 7 \text{ TeV}$ L dt = 5/fb

√s = 7 TeV

W⁺ s, d С 000000 С g

· solve ambiguities in DIS and neutrino data

250

√s = 7 TeV

- very important for future W mass studies @LHC
- s / \overline{s} asymmetry candidate to explain NuTeV anomaly

CMS preliminary

Strategy

CMS preliminary

charm + W cross section

$charm + W cross section ratio \sqrt{\sqrt{S} = 7 \text{ TeV}}$

Differential Cross section Ratio vs. lepton pseudorapidity

$$R_c^{\pm} = \frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)} = \frac{(N^+_{OS} - N^+_{SS})}{(N^-_{OS} - N^-_{SS})}$$

L dt = 5/fb

Good agreement with MCFM @ NLO

PDFs :

MSTW08 (+DIS data)

CT10 (+DIS data)

NNPDF23 (+DIS data)

beauty + W

$$pp \rightarrow W (\rightarrow \mu v) + bb$$

• main background in the HW production with bb final state

• impact on signature for BSM processes

b-tagging

- use discriminating variables b with displaced vertex measurement \rightarrow high rejection of light and charm quarks
- Main backgroun from $t\overline{t}$:

use a control region requiring an additional lepton and two additional light jets

- simultaneous binned likelihood fit to the
- leading jet p_T (signal region)
- J1J2 invariant mass (*top* control region)
- good agreement with MadGraph+Pythia

beauty + W cross section

 $\sigma(pp \rightarrow W + b\overline{b}) \times \mathcal{B}(W \rightarrow \mu\nu) = 0.53 \pm 0.05 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.06 \text{ (th.)} \pm 0.01 \text{ (lum.) pb.}$

beauty + Z

Z + b production at LHC

Two different models in perturbative QCD

The *b* quark is produced in the *gluon splitting* and the *b* PDF is set to zero: only 4 flavours inside the proton (**4-Flavours Scheme 4FS**)

The *gluon splitting* is included in the *b* quark PDF, 5 flavours inside the proton (**5-Flavours Scheme 5FS**)

 $5FS \longrightarrow m_b = 0$

prediction: MadGraph 5FS (tree level)

NLO prediction: MCFM, Powheg

beauty + Z

		$\sqrt{s} = 7 \text{ TeV}$
$Z + b @ 7 { m TeV}$	Z selection	<i>b</i> selection $\int L dt = 5/fb$
 dielectron and dimuon trigger: two high p_T - opposite charge isolated <i>e</i>,μ. 	$p_{\rm T}(\mu, e) > 25,20 \text{ GeV} \\ \eta(\mu, e) < 2.1 \\ 76 < m(ll) < 106 \text{ GeV} \end{cases}$	 at least 1 b-tagged jet anti kt 05 p_T (b-jet) > 25 GeV ΔR (μ,j) > 0.5
b-tagging based on displaced secondary vertices discriminator (CSV).	00	S 6111111111111111111111111111111111111
<pre>backgrounds from top-antitop, estimated with template fit to the dilepton invariant mass in the wide range 60-120 GeV + MET < 50 GeV purity light and charm jets estimated with template from the secondary vertex mass fitted to data;</pre>	CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L = 5.0 \text{ fb}^{-1}$ + Data 2 + b 2 + c 2 + c 2 + i 2 + i 2 + i 2 + i 2 + i 2 + i 2 + i 3 + E + B + B + S + B + S + S + S + S + S + S	$\begin{array}{c} CMS Preliminary \\ Vs = 7 \text{ TeV, } L = 5.0 \text{ fb}^{-1} \\ L = 5.0 \text{ fb}^{-1} $
$f_b = 83 \pm 6 \%$	0 50 100 150 200 250 300 p ^z _T (GeV)	0 50 100 150 200 250 300 p ^{bb} _T (GeV)
Corrected for detector-level effects: acceptance, efficiencies: detector level \rightarrow particle level	5 5 5 5 5 5 5 5 5 5 5 5 5 5	U 1.5 0.5 50 100 150 200 250 300 p ^{bb} _T (GeV)

beauty + Z cross section $\sqrt{s} = 7 \text{ TeV}$ $\int L dt = 5/fb$ *b* selection Z selection Z + b @ 7 TeV• at least 1 b-tagged jet $p_{\rm T}(\mu, e) > 25,20 \; {\rm GeV}$ • anti kt 05 Systematics Uncertainties $|\eta (\mu, e)| < 2.1$ • p_{T} (b-jet) > 25 GeV 76 < m(ll) < 106 GeV• $\Delta R (\mu, j) > 0.5$ • main contributions by Good agreement between data - b-purity (3%) and and theoretical predictions! - b-tagging efficiency (3.6%) Results CMS L=5/fb √s = 7 TeV CMS L=5/fb√s = 7 TeV Total uncert. Total uncert. data: 3.52± 0.02(stat)±0.2(syst)pb data: 0.36± 0.01(stat)±0.07(syst)pb Stat. uncert. Stat. uncert. O aMC@NLO 4F MSTW08 ○ aMC@NLO 4F MSTW08 ▼ MGME5+P6 4F MSTW08, tune Z2-MGME5+P6 4F MSTW08, tune Z2 ▲ MCFM CTEQ6mE ▲ MCFM CTEQ6mE aMC@NLO 5F aMC@NLO 5F MGME5+P6 5F CTEQ6L1,tune Z2 MGME5+P6 5F CTEQ6L1,tune Z2 76<M_u<106 GeV/c² 76<M_u<106 GeV/c² P_{T}^{l} >20 GeV/c, $\ln l^{l}$ <2.4 P_{T}^{I} >20 GeV/c, $|\eta|^{I}$ <2.4 P^b_T>25 GeV/c, lηl^b<2.1 P_T^b>25 GeV/c, lηl^b<2.1 anti- K_{τ} R=0.5 anti-K_T R=0.5 $\Delta R(j,l) > 0.5$ $\Delta R(j,l) > 0.5$ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.452.5 0.5 1.5 2 3 3.5 4 0 $pp \rightarrow Z(II) + bbX$ production cross-section (pb) $pp \rightarrow Z(II) + 1$ b production cross-section (pb)

Compare with the prediction of MadGraph 4FS /5FS @LO and Powheg @LO

+Pythia6

+Pvthia6

Unfolded with the SVD algorithm

Compare with the prediction of MadGraph 4FS /5FS @LO and Powheg @LO

+Pythia6

+Pythia6

Summary and perspectives

- The W/Z + HF is an important and wide part of the SM physics program of CMS
 - W+c @ 7 TeV allowed to test the strange quark PDF of the proton 5°
 - W+b @ 7 TeV cross section measurement compared to NLO prediction 5°
 - Z+b @ 7 TeV inclusive cross section compared with MCFM, aMC@NLO, MadGraph
 - Z+b @ 8 TeV differential cross section compared MadGraph 4FS/5FS, Powheg

- Many W/Z + HF analyses at 8 TeV with full 20/fb data before LHC run II W/Z + 1,2 b-jets/hadrons, W+c, Z+c, PDFs, MPI ...
- Testing new experimental techniques: improved b-tagging, c-tagging, jet substructure..

5 fb⁻¹

20 fb⁻¹