

Recent Results on Properties of the Higgs boson in the $H \rightarrow ZZ \rightarrow 4I$ decay channel at CMS

Linda Finco INFN e Università di Torino

IFAE 2014 – Incontri di Fisica delle Alte Energie

- $H \rightarrow ZZ \rightarrow 4I$ decay channel
- Significance and Signal strength
- Mass measurement
- Spin-parity measurements
- Width measurement
- Conclusions

The $H \rightarrow ZZ \rightarrow 4I$ Channel

Very small branching fraction, but:

- Very clean signature
 - 2 pairs of high p_T and isolated μ or e
 - full reconstructed event topology
 - small background contribution

• Excellent resolution

Significance and Signal Strength

- Minimum of the local p-value at m_H = 125.7 GeV (6.8σ)
- Discovery of the new boson in the fourlepton channel alone
- The only significant excess in the range $m_{\rm H}\,$ < 1 TeV

CMS

1 10⁻¹ 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁷

10⁻⁹

 10^{-11}

 $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^{-1}$

Observed \mathcal{L}_{1D}^{μ} Observed \mathcal{L}_{2D}^{μ}

- Observed \mathcal{L}_{an}^{μ}

Expected

Mass Measurement

- Mass measurement performed using 3D fit with $(m_{4l}, \delta m_{4l}, \mathcal{D}_{kin})$
- Using per-event mass errors 8% improvement
- Main systematic uncertainties due to lepton scale and resolution

 $m_{\rm H} = 125.6 \pm 0.4 ({\rm stat.}) \pm 0.2 ({\rm syst.}) \,{\rm GeV}$

Spin-Parity Measurements

• 2D fit based on \mathcal{D}_{bkg} and \mathcal{D}_{JP} kinematic discriminants

 $\mathcal{D}_{\mathsf{bkg}}$ separates SM Higgs from background

 \mathcal{D}_{IP} discriminates alternative J^P hypothesis from SM Higgs

twelve models tested

 $\sqrt{s} = 7$ TeV | = 5.1 fb⁻¹ · $\sqrt{s} = 8$ TeV | = 19.7 fb

vs = 7 TeV, L = 5.1 fb⁻¹; vs = 8 TeV, L = 19.7 fb

CMS

0

anv

CMS

60 H

20

-20

-40

-2 $\ln(\mathcal{L}_{J^p}/\mathcal{L}_0)$

Width Measurement

- Standard Model prediction at $m_{\rm H}$ = 125.6 GeV is Γ ~ 4 MeV
- Direct measurement strongly limited by experimental resolution
- Current upper limit of 3.4 GeV at 95% C.L.

Width Measurement

Goal: to constrain the Higgs boson width using the Higgs boson production and decay away from the resonance

 Signal strength μ provided by the measurement of the on-shell production

• r value (and $\Gamma_{\rm H}$) can be obtained by measuring the ratio of the production in the off-shell and on-shell region

Warning: the destructive interference with continuum $gg \rightarrow ZZ$ is not negligible at high m_{77}

Width Measurement

• Specific kinematic discriminant \mathcal{D}_{gg} defined, to separate $gg \rightarrow ZZ$ and $qq \rightarrow ZZ$ processes (MELA)

- m_{41} > 220 GeV region is examined
- Signal-enriched region defined by m_{41} > 330 GeV and \mathcal{D}_{gg} > 0.65

 $\Gamma_{\rm H}$ < 6.6 $\Gamma_{\rm H}^{\rm SM}$ (expected $\Gamma_{\rm H}$ < 11.5 $\Gamma_{\rm H}^{\rm SM}$) equivalent to $\Gamma_{\rm H}$ < 27.4 MeV at 95% C.L.

The analyzed resonance is clearly visible in the H→ZZ→4l decay channel, allowing the study of its properties with high precision
The particle is compatible within uncertainties with a SM Higgs boson and alternative spin-parity hypotheses are disfavored by the data
The experimental constraint on Higgs total width is determined using off-shell production and decay, improving by more than two orders of

magnitude the previous experimental result

Backup

Analysis Strategy

Analyisis based on reconstruction, identification and isolation of leptons

Event selection and kinematics

- $p_T^e > 5$ GeV and $p_T^{\mu} > 7$ GeV
- $p_T^1 > 20$ GeV and $p_T^2 > 10$ GeV
- 40 < m_{z1} < 120 GeV
- 12 < m_{z2} < 120 GeV
- 110 < m₄ < 1000 GeV
- Isolation cut
- Impact parameter cut

Background sources

- Irreducible four-lepton contribution (direct ZZ /Z $\gamma^* \rightarrow$ 4l production)
- Reducible contribution from Zbb \rightarrow 4l and tt \rightarrow 4l
- Instrumental contribution (misidentification of leptons)

L. Finco

Kinematic Discriminant

Signal/background kinematic discriminant defined using matrix element techniques

H(126) 2D PDF

Jet Categories - Couplings

• To increase sensitivity to the coupling to bosons and fermions (μ_V and μ_F) events are splitted in two exclusive categories:

Untagged: less than two jets (VBF < 5%) Di-jet: at least 2 jets with p_T>30 GeV (VBF ~20%)

• One extra dimension added to discriminate production mechanisms:

Signal Strength $\mu = \sigma/\sigma_{SM}$

Signal strength at 125.8 GeV $\mu = 0.91^{+0.30}_{-0.24}$

 $\mu_{untag} = 0.83^{+0.31}_{-0.25}$ $\mu_{di-jet} = 1.45^{+0.89}_{-0.62}$

 $\mu_{ggH,ttH} = 0.80_{-0.36}^{+0.46}$ $\mu_{VBF,VH} = 1.7_{-2.1}^{+2.2}$

Production Mechanisms

L. Finco

IFAE 2014

17

Upper Limit (4I + 2I2T)

L. Finco

CP-Violation f_{a3}

Decay amplitude for a spin-0 boson

$$A(X \to V_1 V_2) = v^{-1} \varepsilon_1^{*\mu} \varepsilon_2^{*\nu} \left(\underline{a_1 g_{\mu\nu} m_X^2} + \underline{a_2 g_{\mu} q_{\nu}} + \underline{a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}} \right) \implies f_{a3} = \underbrace{|A_3|^2}{|A_1|^2 + |A_3|^2}$$

- SM Higgs boson (0⁺) decay is dominated by A_1 , while 0⁻ decay by A_3
- Presence of both amplitudes indicates CP-violation

