

# Physics of Ultra-peripheral collisions with ALICE at LHC

D. De Gruttola\* on behalf of the ALICE Collaboration

\*Centro Fermi Roma and Salerno INFN and University - Italy





### LHC as yPb and yp collider

- √ heavy ions accelerated at ultra relativistic energies → electromagnetic
  field that can be viewed as a flux of quasi-real photons
- √ hadronic processes strongly suppressed when b > R<sub>1</sub>+R<sub>2</sub>
- $\checkmark$  high  $\sigma$  for  $\gamma$ -induced reactions e.g. vector meson photoproduction
- ✓ quarkonia photo-production proportional to the gluon density G(x,Q²) in Pb
- ✓ Bjorken-x accessible at LHC x =  $(M_V/\sqrt{s_{NN}})\exp(\pm y) \sim 10^{-2}$   $10^{-5}$
- ✓ vector meson photo-production as tool to measure nuclear gluon shadowing and saturation



### ALICE and Ultra-Peripheral (UP) Collisions



central Pb-Pb collision



UP Pb-Pb collision at mid-rapidity



UP Pb-Pb collision at forward rapidity



UP Pb-Pb collision at semi-forward rapidity

two tracks in an otherwise empty detector\*

detailed studies done to understand the noise and the emptiness of the detector

\*definition from STAR



# γN processes (Pb-Pb collisions)



### J/ψ measurements at mid-rapidity

electrons

Eur. J. Phys. C73, 2617 (2013)









- $\diamond$  coherent and incoherent J/ $\psi$
- (coherent and incoherent) ψ' feed down
- $\Rightarrow \gamma \gamma \rightarrow \mu^+ \mu^- (e^+ e^-)$
- ♦ hadronic

(more details in the backup)



- coherent vector meson production:
  - ♦ photon couples coherently to all nucleons
  - $\Rightarrow$   $\langle p_T \rangle \sim 1/R_{Pb} \sim 60 \text{ MeV/c}$
  - ♦ no neutron emission in ~80% of cases
- ✓ incoherent vector meson production:
  - ♦ photon couples to a single nucleon
  - $\Leftrightarrow$  <p<sub>T</sub>> ~ 1/R<sub>p</sub> ~ 500 MeV/c
  - target nucleus normally breaks up

p<sub>T</sub> < 200 (300) MeV/c and < 6 neutrons emitted by nuclei to separate coherent from incoherent samples

### $J/\psi$ measurements (coherent at forward rapidity)

first measurement of J/ $\psi$  photo-production done at LHC

Phys. Lett. B718 (2013) 1273 -1283





p<sub>T</sub> distribution fitted using MC samples representing several components:

- coherent and incoherent J/ψ
- ψ' feed down
- $\Rightarrow \gamma \gamma \Rightarrow \mu^+ \mu^-$

distribution peaked at low momentum as expected from coherent production

 $J/\psi$  photo-production probes the gluon distribution in Pb at x~10<sup>-2</sup>

### Results and comparison with models



Phys. Lett. B718 (2013) 1273 -1283

Eur. J. Phys. C73, 2617 (2013)

$$|y| < 0.9$$
  $\rightarrow d\sigma_{J/\psi}^{coh} / dy = 2.38_{-0.24}^{+0.34} (stat + syst) \text{ mb}$   
-3.6 <  $y < -2.6 \rightarrow d\sigma_{J/\psi}^{coh} / dy = 1.00 \pm 0.18 (stat)_{-0.26}^{+0.24} (syst) \text{ mb}$ 

data are closer to models incorporating nuclear gluon shadowing

measured cross section in good

agreement with the calculation using

- ✓ AB: Adeluyi and Bertulani, PRC85 (2012) 044904 these models use LO pQCD scaled by an effective constant to correct for missing contributions MSTW08 assumes no nuclear effects, EPS08/09 incorporate nuclear effects according to different parametrizations
- ✓ CSS: Cisek, Szczurek, Sch.fer PRC86 (2012) 014905 color dipole model based on unintegrated gluon distribution of the proton
- ✓ STARLIGHT: Klein, Nystrand PRC60 (1999) 01493 the EPS09 nuclear gluon fit GVDM coupled to a Glauber approach and using HERA data to fix the γp cross section
- ✓ GM: Goncalves, Machado, PRC84 (2011) 011902 color dipole model, where the dipole nucleon cross section is from the IIM saturation model
- ✓ RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation

# γγ processes (Pb-Pb collisions)



### γγ cross section

arXiv:1305.1467 [nucl-ex]



- $\checkmark$  the γγ cross section measurement provides important constraints on QED calculations when the vertex  $\sqrt{\alpha}$  has to be replaced by  $Z\sqrt{\alpha}$
- ✓ due to the large Pb charge, giving  $Z\sqrt{\alpha} \sim 0.6$ , the inclusion of higher order terms is not straightforward → the models\* including higher order terms predict a reduction of the cross section up to 30%

$$\Rightarrow$$
 [2.2,2.6] GeV/c<sup>2</sup>  $\Rightarrow$   $\sigma_{\gamma\gamma}^{e^+e^-} = 154 \pm 11(stat)_{-10.8}^{+16.6}(syst) \,\mu b$  precision 12%

$$\Rightarrow$$
 [3.7,10] GeV/c<sup>2</sup>  $\Rightarrow \sigma_{\gamma\gamma}^{e^+e^-} = 91 \pm 10(stat)_{-8.0}^{+10.9}(syst) \ \mu b$  precision 16%

- v the measured values for the  $\gamma\gamma$  cross sections are 20% above but fully compatible within 1.0 σ and 1.5 σ with the STARLIGHT (LO) prediction for the low and high invariant mass intervals (128 μb and 77 μb)
- → the models predicting a strong contribution of higher-order terms (not included in STARLIGHT) are not favored

\*Baltz Phys. Review 80 2009 034-901

# γp processes (p-Pb collisions)



## ALICE Physics potential in p-A

 $J/\psi$  photoproduction dominated by  $\gamma$ +p process

p-Pb: proton moves towards the muon arm

Pb-p: Pb-nucleus moves towards the muon arm

accessible kinematics regions:

p-Pb forward 21<W<sub>γp</sub><45 GeV

p-Pb semi-forward 45<W<sub>γp</sub><82 GeV

mid-rapidity  $100 < \dot{W}_{\gamma p} < 250 \text{ GeV}$ 

Pb-p semi-forward 300<W<sub>yp</sub><550 GeV

Pb-p forward 550<W<sub>yp</sub><1160 GeV



possibility to study gluon PDFs in proton up to  $x\sim10^{-5}$ 

H1: A. Aktas et al. Eur.Phys. J.C46:585-603,2006 ZEUS: S. Chekanov et al., Nucl. Phys. B695 (2004) 3

### Measured yp cross sections in p-Pb



- ✓ ALICE cross section as a function of rapidity in the lab frame
- comparison with fixed-target experiments and model calculations
- ✓ consistency between ALICE and HERA exclusive cross section
- ✓ measured σ(p-Pb) to σ (γ+p) through the photon spectrum n<sub>γ</sub>(y):

  dσ (p+Pb→p+Pb+ I/w)/dy=p (y) σ(y+p→ I/w+p)

 $d\sigma (p+Pb\rightarrow p+Pb+J/\psi)/dy=n_{\gamma}(y) \sigma(\gamma+p\rightarrow J/\psi+p)$ 

power law fits (not shown)  $\sigma \sim (W_{\gamma p}/90 \text{GeV})^{\delta}$ 

- ✓ ALICE data compatible with a power law with ≥=0.67 ±0.06
- ✓ exponent compatible with H1 (8=0.67±0.03) and ZEUS (8=0.69±0.02±0.03)
- ✓ exponent from LHCb: 6=0.92 ±0.15 (J. Phys. G40 (2013) 045001, waiting for update).
- ✓ it would be interesting to reach higher energy in the future LHC runs in order to investigate the possible occurence of saturation

### Conclusions

### LHC as γPb, γp and γγ collider to study:

- $\checkmark$  (Pb-Pb) measurement of exclusive vector meson (J/ψ) cross sections to investigate the gluon distribution in the nuclei
- ✓ (Pb-Pb) results agree with EPS09 gluon distribution, favoring the presence
  of gluon shadowing
- (Pb-Pb) γγ cross section to set limits on higher order terms in QED processes
- $\checkmark$  (p-Pb) good agreement on J/ $\psi$  photoproduction from previous experiments at <W> ~ 30 GeV
- ✓ (p-Pb) J/ $\psi$ +p cross section at W > 1000 GeV (and not only) in progress
- √ (Pb-Pb) ρ vector meson photoproduction analysis ongoing
- ✓ (Pb-Pb)  $\psi$  vector meson photoproduction analysis ongoing

# Back up

### ALICE and UPCs (J/ψ → μ+μ-)

#### UPC forward trigger

- $\Rightarrow$  single muon trigger with p<sub>T</sub> > 1 GeV/c (-4< $\eta$ <-2.5)
- $\Rightarrow$  hit in VZERO-C (-3.7< $\eta$ <-1.7)
- $\Rightarrow$  no hits in VZERO-A (2.8< $\eta$ <5.1)





### integrated luminosity ~ 55 µb<sup>-1</sup>

- ✓ offline event selection:
  - ♦ beam gas rejection with VZERO
  - ♦ hadronic rejection with ZDC and SPD
- ✓ track selection:

  - matching with the trigger

  - $\Rightarrow$  opposite sign dimuon: -3.6 < y < -2.6

### ALICE and UPCs $(J/\psi \rightarrow \mu^{+}\mu^{-} \text{ and } J/\psi \rightarrow e^{+}e^{-})$

### UPC mid-rapidity trigger

- $\Rightarrow$  2 hits in SPD
- ♦ 2≤ TOF hits ≤6 and back-to-back topology





### integrated luminosity ~ 23 μb<sup>-1</sup>

- ✓ offline event selection:

  - ♦ primary vertex
  - $\Rightarrow$  max (p<sub>T1</sub>, p<sub>T2</sub>) > 1 GeV/c

  - ZDC cut on number of neutrons emitted in coherent events

10/04/2014

### J/ψ measurements at mid-rapidity

Eur. J. Phys. C73, 2617 (2013)









fit of p<sub>T</sub> distribution to estimate the different components of the signal:

- coherent and incoherent J/ψ
- (coherent and incoherent) ψ
   'feed down
- $\Rightarrow \gamma \gamma \Rightarrow \mu^+ \mu^-$
- ♦ hadronic

- ✓ shapes for the first five fitting functions provided by STARLIGHT
- hadronic component extracted from data at higher centralities
- ✓ relative normalization left free for coherent and incoherent photoproduction
- ✓ feed down constrained to the theory
- ✓ two-photon contribution determined from the fit to the continuum of inv mass distributions
- ✓ hadronic component
   constrained by the fit to the
   region p<sub>T</sub> > 1.1 GeV/c, where
   the ultra-peripheral J/ψ
   contribution is negligible

### Results and comparison with models



- ✓ STARLIGHT: Klein, Nystrand PRC60 (1999) 01493 GVDM coupled to a Glauber approach and using HERA data to fix the yp cross section
- ✓ RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation
- ✓ LM: Lappi, Mantysaari, PRC87 (2013) 032201 color dipole model based with Glauber approach and a saturation prescription

the ratio  $\sigma_{inc}/\sigma_{coh}$  provides further constraints on the treatment of the nuclear modifications implemented in the different models

10/04/2014