

The DarkSide VETO: Neutron and Muon Detector

Luca Pagani
University of Genoa
INFN Genoa

The DarkSide Project

Direct detection of dark matter with Argon in a **background free** environment

Problems:

very **rare** event (< 10events/year/ton) very **low** energy (< 100keV)

Solutions:

Build detector with:

low detection threshold

low internal and external background
high background/signal discrimination power

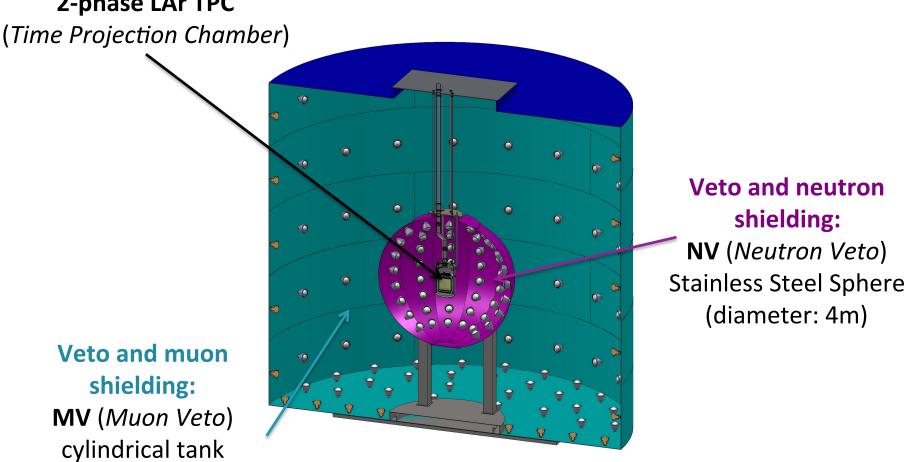
Background

Radioactive background (α, β, γ and n) due to materials, natural radioactivity and cosmogenic

Neutrons dangerous background MIMIC dark matter signals

Radiogenic Neutrons:
produced by radioactive decays
of isotopes present
in the detector components

Cosmogenic Neutrons: produced by cosmic muons interactions in detector and surrounding materials


The DarkSide detector @ LNGS

The DarkSide detector

Inner Detector:2-phase LAr TPC

(high: 10m, width: 11m)

Muon Veto

Muon Veto

Cherenkov detector made of 1000 ton of ultrapure water seen by 80 8" PMTs on the wall and floor

Borexino CTF (*Counting Test Facility*) water tank covered by TYVEK (high reflectivity material)

Active VETO for cosmogenic muons **passive shielding** for natural/external radioactivity (γ and n)

Neutron Veto

Neutron Veto

Liquid scintillator detector doped with **boron**: 30 ton mixture 1:1 of PC (*PseudoCumene*) + PPO and TMB (*Tri-Methyl Borate*) seen by 110 8" PMTs with high Q.E. low intrinsic radioactivity

Efficiently tagging of neutron background via neutron capture on 10 B (σ $^{-21}$ cm 2): γ + α (1.47MeV) (BR 96%) or α (1.01MeV) (BR 4%) released α corresponding to a signal of $^{-40}$ ÷60keV_{ee}

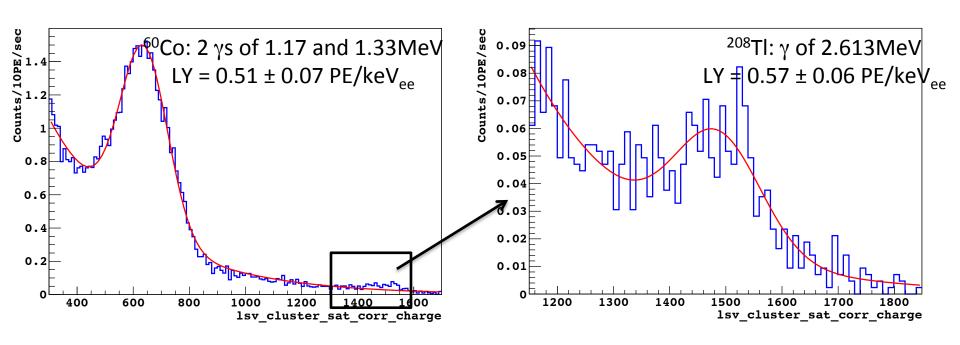
Active neutron VETO

anti-coincidence detector

in situ measurement of neutron background

Current Status

Successfully filling of the two detectors



Since **October 2013** data taking TPC+VETO

Current Status

Neutron Veto: light yield (LY) ~0.5PE/keV_{ee}

measured by ⁶⁰Co, confirmed by ²⁰⁸Tl and ¹⁴C satisfactory for background suppression requirements

Current Status

Problem:

Neutron Veto: high rate

background studies show high rate due to high contamination of ¹⁴C present in the TMB

Solutions:

Already identified a new batch of TMB with low ¹⁴C content

on going **tests** for **removal** and **replacement** of the old TMB **study** on actual quantity of TMB needed to meet VETO requirements

Summary and Conclusions

Since October 2013 DarkSide is taking data

✓ Muon Veto:

fully functional

✓ Neutron Veto:

LY ~0.5PE/keV_{ee} satisfactory for neutron rejection: released α produces signal 40÷60keV_{ee} -> ~30PE easy to detect

Neutron Veto:

High rate: **identified** source on ¹⁴C on going tests for **removal** and **replacement** of old TMB