STATO E PROSPETTIVE DI MISURE A BELLE II

Guglielmo De Nardo Università di Napoli Federico II e INFN

- Physics motivation
- Status of the project
- Overview of the Physics Program
 - Leptonic and semileptonic decays,
 FCNC, LFV, CP violation

The BaBar and Belle B-factories impact in HEP

- Successful experimental program:
 - Established CP violation in B system and the remarkable consistency of the CKM mechanism of the SM

Nobel Prize in Physics In 2008 awarded to Kobayashi and Maskawa

Frontier Physics: what now?

- Despite the experimental efforts, the SM did not break down. No compelling evidence of NP.
 - After Higgs discovery, the same story (for now...) in direct searches at LHC
- Option one: Let a Post-Higgs-Depression syndrome bring us down
- Option two: Be aggressive and insist on several frontiers, overlapping and interdependent
 - Also be patient

Direct Searches at LHC

Flavor Physics

Neutrino Phys.
Particles from the cosmo

What is the role of Flavor Physics?

• Quantum effects relate (New) Phyics at high mass scales to lower energy observables.

$$A = A_0 \left[c_{SM} \frac{1}{M_W^2} + c_{NP} \frac{1}{\Lambda^2} \right]$$

In Flavor Physics detectable in processes where The SM contribution is absent or well predicted.

Notable examples relevant for Belle II Lepton Flavor Violation (τ -> $\mu \gamma$, 3μ , 3e) Theoretically clean leptonic B decays e lepton univ. Ratios FCNC b \rightarrow s transitions (B \rightarrow X $_s \gamma$, K(*) $\nu \nu$)

Unique capabilities of SuperKEKB/Belle II

- Two correlated B mesons at Y(4S)
- No trigger bias (almost 100% efficiency for multihadron events)
- Excellent efficiency and resolution in tracking as well as in detecting photons, K_L , π^0 and in reconstruction of intermediate resonances
- Very clean (compared to hadron machines) environment permits "full reconstruction" of the event
 Critical for analysis with weak signatures like leptonic B decays, inclusive analyses...

KEK B accelerator upgrade to SuperKEKB

- 40x better luminosity
- 20x coming from P.Raimondi nano-beams proposal
- 2x Higher beam currents
- Upgrades in many acc. components

Luminosity projection

8

Detector upgrade

- Changing specifications
 - Larger occupancy
 - Pile-up and fake hits in the EM calorimeter
- Higher event rates
 - DAQ and front end electronics upgrades
- Better performances
 - Better vertex resolution
 - Improved hermeticity (missing energy)
 - Forward PID (kaon ID)
 - Better KL identification

Belle II TDR arXiv:1011.0352

Belle II collaboration

600 collaborators from 97 institutes and 23 countries

Physics Program highlights

- Tension between inclusive and exclusive determinations still here, today
 - Problem in theory? Common exp. systematic effects to understand?
- Belle II will reach 1%-2% accuracy, dominated by systematics
 - The large statistics will allow a systematic survey of exclusive modes
 - Explore in detail the q² spectrum.

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)	•	v	
$ V_{ub} $ exclusive (had. tagged)					
$711 \; { m fb^{-1}}$	5.8	(2.3,1.0)	6.3	8.7 (2.0)	10.8 (6.6)
$5~\mathrm{ab^{-1}}$	2.2	(0.9,1.0)	2.6	4.0 (2.0)	4.7(3.3)
$50 \ {\rm ab^{-1}}$	0.7	(0.3,1.0)	1.3	2.0	2.4
$ V_{ub} $ exclusive (untagged)					
$605 \; {\rm fb^{-1}}$	2.7	(2.1,0.8)	3.5	8.7 (2.0)	9.4(4.0)
$5~{ m ab^{-1}}$	1.0	(0.8, 0.8)	1.5	4.0 (2.0)	4.2(2.5)
$50 \ {\rm ab^{-1}}$	0.3	(0.3,0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5	6.5
$5~{ m ab^{-1}}$	1.1	(1.3, 1.6)	2.3	2.5	3.4
$50 \ {\rm ab^{-1}}$	0.4	(0.4,1.6)	1.7	2.5	3.0

Leptonic B decays

- Very clean theoretically, hard experimentally (weak signature)
- SM contribution suppressed by helicity
- Sensitive to NP contribution (charged Higgs)

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2$$

Moreover Belle II can test LFU with ratios

$$R^{\tau\mu} = \frac{\Gamma(B \to \mu\nu)}{\Gamma(B \to \tau\nu)} \qquad \qquad R^{\tau e} = \frac{\Gamma(B \to e\nu)}{\Gamma(B \to \tau\nu)}$$

Current B $\rightarrow \tau \nu$ measurements

$\mathbf{B} \rightarrow \mathbf{I} \, \mathbf{v}$ status and prospects

- B $\rightarrow \tau \nu$ BR expected at 3% (dominated by systematics)
 - How much of the error is reducible?
- Will observe of B $\rightarrow \mu \nu$ and B $\rightarrow e/\mu \nu \gamma$ (assuming SM BR)

Semitauonic decays

- SM: tree level b \rightarrow c semileptonic
- NP from 2HDM extensions
- $R(D^{(*)}) = BR(B \rightarrow D^{(*)} \tau \nu) / BR(B \rightarrow D^{(*)} 1 \nu)$

Belle and BaBar measurements exceed SM expectation!

Belle II projections based on extrapolation of the BaBar result

	fb-1	Statistical	Systematic	Total
R(D)	423	13.0	(9.6, 1.3)	16.5
	5000	3.8	(2.8, 1.3)	5.2
	50000	1.2	(0.9, 1.3)	2.5
R(D*)	423	7.0	(5.5, 1.3)	9.0
	5000	2.1	(1.6, 1.3)	2.9
	50000	0.7	(0.5, 1.3)	1.6

LHC-b will reach a 2% accuracy in the zero crossing of the FB asymmetry q² distribution in B → K* μ* μ* decays

- Belle II: smaller statistics
 - measure B \rightarrow K* e⁺ e⁻
 - Perform an inclusive B \rightarrow X_s 1⁺ 1⁻ analysis

Belle measurement Phys Rev Lett 103 171801 (2009)

Belle II expectation with 50 ab-1

- b \rightarrow s(d) transitions at quark level with an high energy γ
- Forbidden at tree level in SM, sensitive to charged higgs and new particles in the loop
- Experimental analyses may be on exclusive modes or inclusive.
- Belle/BaBar BR measurements systematically limited except for the tag reconstruction method. Belle II aim at 6% uncertainty.
- CP asymmetry would be new physics. Target Belle II uncertainty $\delta(A_{CP}) = \frac{N(\overline{B}^0(B^-) \to X\gamma) N(\overline{B}^0(B^+) \to X\gamma)}{N(\overline{B}^0(B^-) \to X\gamma) + N(\overline{B}^0(B^+) \to X\gamma)}$

- Out of reach of current B-factories. At the edge of the sensitivity also for Belle II.
- Scaling Belle results (with had tag only) we expect 100 $B^+ \rightarrow K^+ \nu \nu$, assuming SM BR.
 - 20% accuracy with the full dataset

- Out of reach of current B-factories. At the edge of the sensitivity also for Belle II.
- Scaling Belle results (with had tag only) we expect 100 B \rightarrow K⁺ v v, assuming SM BR.
 - 20% accuracy with the full dataset
- Is B \rightarrow Xs $\vee \nu$ possible?
 - Maybe as a sum of exclusive modes

```
X_s = K^{\pm}/K_S + \text{up to four } \pi \text{ (at most one } \pi^0)
[ K ] : K, K_S
[ K\pi ] : K\pi, K_S\pi, K\pi^0, K_S\pi^0
[ K2\pi ] : K2\pi, K_S2\pi, K\pi\pi^0, K_S\pi\pi^0
[ K3\pi ] : K3\pi, K_S3\pi, K2\pi\pi^0, K_S2\pi\pi^0
[ K4\pi ] : K4\pi, K_S4\pi, K3\pi\pi^0, K_S3\pi\pi^0
```


New Physics searches with taus

NP may enhance decays negligible in the SM

- Belle II will collect a huge sample of τ decays
- Will perform a systematic survey of τ physics
- Among the most intersting LFV searches

•
$$\tau \rightarrow \mu \gamma$$

•
$$\tau \rightarrow 3\mu / 3e$$

22

· Almost two order of magnitude improvement expected

CP violation

• Time dependent CP asymmetry in B \rightarrow K(*){K_s π^0 } γ

$$\mathcal{A}(\Delta t) = Ssin(\Delta m \Delta t) + Acos(\Delta m \Delta t)$$

- SM predicts S = -0.03
- Belle II expectation $\sigma_{\text{exp}}(S) = 0.03$ at 50 ab⁻¹ (SM level)

- Competitive sensitivity in determination of CKM angle γ with B \rightarrow D K decays
 - $\sigma_{\rm exp}(\gamma) = 1.5^{\circ} {\rm at} \ 50 {\rm ab}^{-1}$

- Belle II can improve up to an order of magnitude the results of BaBar and Belle
 - Expecially relevant for penguin modes
 - Many of them limited by statistics

Observable	SM theory	Current measurement	Belle II
Observable		(early 2013)	$(50{\rm ab^{-1}})$
$S(B o \phi K^0)$	0.68	0.56 ± 0.17	±0.03
$S(B o\eta^\prime K^0)$	0.68	0.59 ± 0.07	± 0.02
α from $B \to \pi\pi$, $\rho\rho$		±5.4°	$\pm 1.5^{\circ}$
γ from $B \to DK$		±11°	$\pm 1.5^{\circ}$
$S(B o K_S\pi^0\gamma)$	< 0.05	-0.15 ± 0.20	± 0.03
$S(B o ho\gamma)$	< 0.05	-0.83 ± 0.65	± 0.15
$A_{ m CP}(B o X_{s+d}\gamma)$	< 0.005	0.06 ± 0.06	± 0.02
$A^d_{ m SL}$	-5×10^{-4}	-0.0049 ± 0.0038	± 0.001

Charm Physics

- Based on beam and Recoil tag reconstruction
- Many modes can be studied. Among them
 - $D_s \rightarrow \tau \nu, \mu \nu$
 - D \rightarrow v v and γ γ (expected sensitivities 10-7)

	Statistical	Systematic		Total
		${\it reducible}$	irreducible	
$\overline{\mathcal{B}(D_s \to \mu \nu)}$				
$913 \; { m fb^{-1}}$	5.3	0.0	3.8	6.5
$5~{ m ab}^{-1}$	2.3	1.6	0.0 - 0.9	2.9
50 ab^{-1}	0.7	0.5	0.0 - 0.9	0.9 - 1.3
$\overline{\mathcal{B}(D_s \to \tau \nu)}$				
$913 \; {\rm fb^{-1}}$	3.7%	4.4%	3.5%	6.8%
$5~{\rm ab^{-1}}$	1.6%	1.9%- $2.3%$	3.5%- $2.2%$	3.5%- $4.3%$
$50 { m ab}^{-1}$	0.5%	0.6%- $0.7%$	3.5%- $2.2%$	2.3%- $3.6%$

Conclusions

- Belle II Physics program very rich and complementary to LHC-b
 - Unique capabilities of the machine/detector greatly improve the discovery potential
- SuperKEKB upgrade on schedule and will start commissioning at beginning of 2015
- Belle II construction and integration on-going. We expect to roll in late 2016 for first physics run.

BACKUP

