Violazione di CP nei decadimenti dei mesoni B a LHCb

Indice

- Violazione di CP nel Modello Standard
- L'esperimento LHCb
- Selezione di misure di violazione di CP
 - Violazione di CP diretta
 - Violazione di CP nel miscelamento
 - Violazione di CP nell'interferenza tra miscelamento e decadimento
- Conclusioni

Violazione di CP nel Modello Standard

- La violazione di CP nel MS è governata dalla matrice CKM
 - miscelamento degli autostati di massa e di sapore dei quark
 - comparsa di fasi complesse nelle ampiezze delle interazioni deboli

CP

La determinazione precisa dei parametri della matrice CKM rappresenta uno dei metodi più efficaci di validazione del MS

√_{UP}

W⁺

Fenomenologia della violazione di CP

- Violazione di CP diretta
 - Differenti ratei di decadimento per due processi coniugati di CP

 $- |A_{f}| \neq |\overline{A}_{\overline{f}}|$

- Violazione di CP nel miscelamento dei mesoni neutri
 - − Diffe<u>renti</u> probabilità per i processi $B^0 \rightarrow B^0 \in \overline{B}^0 \rightarrow B^0$

 $- \mathsf{P}(\mathsf{B}^{0} \rightarrow \overline{\mathsf{B}}^{0}) \neq \mathsf{P}(\overline{\mathsf{B}}^{0} \rightarrow \mathsf{B}^{0})$

 Violazione di CP nell'interferenza tra i diagrammi di decadimento e di miscelamento

Asimmetria diretta di CP

Asimmetria di CP dipendente dal tempo

$$A(t) = \frac{\Gamma_{\overline{B} \to f}(t) - \Gamma_{B \to f}(t)}{\Gamma_{\overline{B} \to f}(t) + \Gamma_{B \to f}(t)}$$

Il rivelatore LHCb

Violazione diretta di CP

L'angolo y del triangolo unitario

- L'angolo γ può essere determinato dallo studio di decadimenti governati da diagrammi ad albero
 - Interferenza tra le transizioni
 b→u e b→c
 - Le asimmetrie di CP e i ratei di decadimento dei canali B⁺→D⁰h⁺ (h=K,π) sono sensibili a γ
 - la determinazione di γ tramite questi decadimenti è priva di errori teorici
 - $\delta \gamma / \gamma = O(10^{-7})$ [arxiv:1308.5663]
 - rappresenta uno dei controlli più efficaci che si possano fare sulla consistenza del MS

L'angolo y del triangolo unitario

- Tre metodi, distinti in funzione dei decadimenti del D⁰
 - ADS, D⁰ può decadere in entrambi gli stati f ed \overline{f}
 - $D^0 \rightarrow K^- \pi^+$, $D^0 \rightarrow K \pi \pi \pi$
 - GLW, D⁰ decade in autostati di CP
 - $D^0 \rightarrow K^+ K^-$, $D^0 \rightarrow \pi^+ \pi^-$
 - GGSZ, analisi delle asimmetrie in regioni diverse del piano di Dalitz dei decadimenti D⁰
 - $D^0 \rightarrow K^0_S \pi^+ \pi^-$, $D^0 \rightarrow K^0_S K^+ K^-$

Combinazione delle misure $B^+ \rightarrow D^0 h^+$

- Misure utilizzate
 - − $B^+ \rightarrow D^0 h^+$, $D^0 \rightarrow K_S^0 h^+ h^-$ "GGSZ" [PLB 718 (2012) 43]
 - − B⁺→D⁰h⁺, D⁰→K⁺K⁻, $\pi^{+}\pi^{-}$, K⁺ π^{-} "GLW+ADS" [PLB 712 (2012) 203]
 - B⁺→D⁰h⁺, D⁰→Kπππ "ADS" [PLB 723 (2013) 44]
- Vincoli esterni utilizzati
 - Oscillazione del mesone D⁰ [LHCb, PRL 110 (2013) 101802]
 - − Fase forte del decadimento D⁰→Kπππ [CLEO-c, PRD 80 (2009) 031105]
 - − Asimmetrie di CP dei decadimenti $D^0 \rightarrow K^+K^-$ e $D^0 \rightarrow \pi^+\pi^-$ [HFAG]

Combinazione delle misure $B^+ \rightarrow D^0 h^+$

- Aggiornamento preliminare [LHCb-CONF-2013-006]
 - Misure $B^+ \rightarrow D^0 K^+$ citate nella slide precedente
 - Misure dell'analisi GGSZ dei decadimenti B⁺→D⁰K⁺ basate su
 2 fb⁻¹ @ 8 TeV raccolti nel 2012 [LHCb-CONF-2013-004]
 - Non ancora inclusi gli effetti di violazione di CP nei decadimenti del D⁰

Misura di γ da decadimenti B⁺ \rightarrow D⁰{K⁰_SK π }h⁺

- Analisi basata su 3 fb⁻¹
 - arXiv:1402.2982, sottomesso a PLB
 - Analisi di tipo "ADS"
 - Necessita la conoscenza delle fasi e delle ampiezze forti nelle varie regioni del piano di Dalitz del D⁰→K⁰_SKπ
 - Misure esterne di CLEO-c

 La precisione su γ è massima nella regione del piano di Dalitz attorno al K^{*}(892)⁺

Misura di g da decadimenti $B^+ \rightarrow D^0 \{K_S^0 K \pi\} h^+$

$$\left|A^{\pm}\right|^{2} \propto \kappa_{D} \cos\left(\delta_{B} \pm \gamma - \delta_{D}\right)$$

- κ_D ~ 0.7 se mediato su tutto il piano di Dalitz
- κ_D~ 1 nella regione del Dalitz corrispondente al K^{*}(892)⁺

Analisi nella regione del K^{*}(892)⁺

Asimmetria diretta di CP nei decadimenti $B_{(s)}^{0} \rightarrow K\pi$

 La violazione di CP nasce dall'interferenza tra diagrammi ad albero e a pinguino

sensibile ad effetti di nuova fisica

Miglior misura mondiale $A_{\rm CP}(B^0 \rightarrow K^+\pi^-) = -0.080 \pm 0.007 \pm 0.003$

Prima osservazione di violazione di CP nei decadimenti del B_s^0 $A_{CP}(B_s^0 \rightarrow K^- \pi^+) = 0.27 \pm 0.04 \pm 0.01$

Assumendo la validità del MS e della simmetria di U-spin

$$\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B^0_s \to K^- \pi^+)} + \frac{BF(B^0_s \to K^- \pi^+)}{BF(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} = 0$$

[Lipkin, PLB 621 (2005) 126]

Utilizzando le misure dei rapporti di diramazione fatte da LHCb [JHEP 10 (2012) 037]

 $\Delta = -0.02 \pm 0.05 \pm 0.04$ in accordo con MS

Ampiezze di polarizzazione e asimmetria di CP del decadimento B⁰→ φK^{*}

- Decadimento dominato da diagrammi a pinguino con transizioni b→sss
 - alta sensibilità ad effetti di nuova fisica
- Decadimento P→VV: necessaria l'analisi angolare per studiare la composizione in autostati di elicità
 - la polarizzazione longitudinale è attesa essere dominante (f_L ~ 0.8) [Chen, Keum, PRD 66 (2002) 054013], contrariamente alle misure di BaBar e Belle (f_L ~ 0.5)
- Necessario considerare due componenti di onda S
 - $B^0 \rightarrow \phi K^+ \pi^- e B^0 \rightarrow K^* (892)^0 K^+ K^-$

Ampiezze di polarizzazione e asimmetria di CP 1 fb⁻¹ @ 7 TeV del decadimento $B^0 \rightarrow \phi K^*$

Ampiezze di polarizzazione e asimmetria di CP del decadimento B⁰→ φK^{*}

 Dato che lo stato finale definisce il sapore del B al decadimento è possibile misurare l'asimmetria di CP diretta come

$$A = \frac{N(\bar{B}^0 \to \phi \bar{K}^*(892)^0) - N(B^0 \to \phi K^*(892)^0)}{N(\bar{B}^0 \to \phi \bar{K}^*(892)^0) + N(B^0 \to \phi K^*(892)^0)}$$

- Utilizzato il decadimento $B^0 \rightarrow J/\psi K^*$ per eliminare le asimmetrie di $A = A + A_D + \zeta A_P$ rivelazione $K^+\pi^-/K^-\pi^+ (A_D)$ e l'asimmetria di produzione del $B^0 (A_P)$
 - Correzioni si cancellano nella differenza tra le asimmetrie grezze

$$\Delta A_{CP} = A_{CP}(\phi K^{*0}) - \overbrace{A_{CP}(J/\psi K^{*0})}^{\approx 0} \approx A_{CP}(\phi K^{*0})$$

1 fb⁻¹ @ 7 TeV – arXiv:1403.2888v1

 $A_{CP}(\phi K^{*0}) = (+1.5 \pm 3.2 \pm 0.5)\%$

Asimmetria compatibile con 0

Risultato compatibile con BaBar e Belle ma con un errore ridotto di un fattore 2 16

Asimmetria di CP nel decadimento $B^+ \rightarrow \phi K^+$

- B⁺→ φK⁺: dominato da diagrammi a pinguino per transizioni b→ss̄s
- $B^+ \rightarrow \phi \pi^+$: transizioni $b \rightarrow d\bar{s}s$ fortemente soppresse nel MS, $O(10^{-9}) - O(10^{-8})$
- Misura basata su 1 fb⁻¹ @ 7 TeV:
 - Misura dell'asimmetria di CP del decadimento $B^+ \rightarrow \phi K^+$

 $\Delta A_{CP} = A_{CP}(B^{\pm} \to \phi K^{\pm}) - A_{CP}(B^{\pm} \to J/\psi K^{\pm})$

Le asimmetrie di rivelazione e di produzione si cancellano nella differenza

- Misura del rapporto tra i ratei di decadimento

$$\frac{\mathcal{B}(B^{\pm} \to \phi \pi^{\pm})}{\mathcal{B}(B^{\pm} \to \phi K^{\pm})}$$

Asimmetria di CP nel decadimento $B^+ \rightarrow \phi K^+$

Violazione di CP diretta nei decadimenti $B^+ \rightarrow h^+ h^- \pi^+$

 Contributi di diagrammi a pinguino rendono le osservabili sensibili a nuova fisica

- Asimmetria di rivelazione
 - $D_s^+ \rightarrow K^+ K^- \pi^+$
- Asimmetria di produzione
 - B⁺→J/ψK⁺

Prima evidenza a 3.2 σ $A_{CP}(B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}) = -0.141 \pm 0.040 \pm 0.018 \pm 0.007$ Prima evidenza a 4.9 σ $A_{CP}(B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}) = 0.117 \pm 0.021 \pm 0.009 \pm 0.007$

Incertezza dovuta a

 $A_{CP}(B^+ \rightarrow J/\psi K^+)$

Violazione di CP diretta nei decadimenti $B^+ \rightarrow h^+ h^- \pi^+$

Violazione di CP nel miscelamento

Asimmetria semileptonica a^s_{sl}

• Osservabile di violazione di CP

$$a_{sl} = \frac{\Gamma(\bar{B}(t) \to f) - \Gamma(B(t) \to \bar{f})}{\Gamma(\bar{B}(t) \to f) + \Gamma(B(t) \to \bar{f})} \approx \frac{\Delta\Gamma}{\Delta M} \tan\phi_{12} \qquad \phi_{12} = \arg(-M_{12}/\Gamma_{12})$$

Attesa piccolo nel MS
 [Lenz & Nierste, arXiv:1102.4274]

$$a_{sl}^s = (1.9 \pm 0.3) \times 10^{-5}$$
$$a_{sl}^d = (-4.1 \pm 0.6) \times 10^{-4}$$

- Sperimentalmente si misura un'asimmetria tra i conteggi degli stati finali coniugati di CP
 - Correzione per l'asimmetria di rivelazione
 - Correzione per fondo dovuto a veri D_s^{+} con μ casuali

Asimmetria semileptonica a^s_{sl}

1 fb⁻¹ @ 7 TeV - PLB 728 (2014) 607-615

$$a_{sl}^s = (-0.06 \pm 0.50 \pm 0.36)\%$$

Consistente sia con il MS che con la misura di D0

$$a_{sl}^s = (-1.12 \pm 0.74 \pm 0.17)\%$$

D0. PRL 110 (2013) 011801

Violazione di CP nell'interferenza tra miscelamento e decadimento

 $|a_1| e^{\mathbf{i}(\delta_1 + \phi_1)}$

Violazione di CP nell'interferenza tra miscelamento e decadimento

- Osservabile di violazione di CP
- Osservabili sperimentali
 - $C \rightarrow$ violazione di CP diretta
 - S \rightarrow violazione di CP indiretta
- Punti cruciali dell'analisi
 - Determinazione del sapore iniziale del B, difficile ad un collisionatore adronico
 - Risoluzione temporale per seguire l'oscillazione veloce del Bs
 - Efficienza di ricostruzione in funzione del tempo di decadimento

Asimmetrie di CP dipendenti dal tempo nei decadimenti $B^0 \rightarrow \pi^+\pi^- e B^0_s \rightarrow K^+K^-$

- La presenza di diagrammi a pinguino rende le osservabili sensibili ad effetti di nuova fisica
 - C_{KK}, S_{KK}, C_{ππ}, S_{ππ} sono sensibili all'angolo γ del Triangolo Unitario e alla fase di miscelamento del mesone B_s

Fleischer EPJ C52, 267 (2007) Ciuchini et al. JHEP 10 (2012) 29

u, c, t

- Interpretazione non banale a causa di incertezze adroniche
- Possibilità unica di confrontare misure di γ influenzate da possibili effetti di nuova fisica con misure di γ libere da tali effetti (decadimenti B⁺→D⁰h⁺)

Asimmetrie di CP dipendenti dal tempo nei decadimenti B⁰ $\rightarrow \pi^+\pi^-$ e B⁰_s $\rightarrow K^+K^-$

Fase di miscelamento del mesone B_s⁰

 Le transizioni b→ccs sono le transizioni migliori per studiare la fase di miscelamento

- Violazione diretta di CP molto piccola
- La fase di miscelamento nel MS è piccola e caratterizzata da un piccolo errore teorico

UTFit dopo EPS2013

$$\phi_s = \left(-2.15 \pm 0.08\right)^\circ$$

$$A_{CP}(t) = \frac{\Gamma(B_s^0 \to f) - \Gamma(\bar{B}_s^0 \to f)}{\Gamma(B_s^0 \to f) + \Gamma(\bar{B}_s^0 \to f)}$$
$$= -\eta_f \sin(\phi_s) \sin(\Delta m_s t)$$

- Canali studiati
 - $B_s^0 \rightarrow J/\psi(K^+K^-)$: P→VV, necessita analisi angolare
 - − $B_s^0 \rightarrow J/\psi(\pi^+\pi^-)$: P→VP, minore statistica ma non è necessaria un'analisi angolare

Fase di miscelamento nei decadimenti $B_s^0 \rightarrow J/\psi K^+K^-$

- Analisi angolare necessaria per separare le componenti CP-pari e CP-dispari
- Stessa definizione degli angoli usata per B⁰→φK^{*}

Migliore misura al mondo ancora dominata dall'errore statistico

Fase di miscelamento nei decadimenti $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

- Stato finale dominato da componente CP dispari (97.7%)
 - Non serve analisi angolare
 - Risultato precedente 1fb⁻¹ [PLB 713(2012)378]

 $\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01$ rad

- Analisi delle componenti nello spettro π⁺π⁻ per determinare la composizione in autostati di CP dello stato finale
 - Misura basata su 3 fb⁻¹
 - 5 contributi: $f_0(980)$, $f_0(1500)$, $f_0(1790)$, $f_2(1270)$, $f_2(1525)$
 - Confermata la componente CP dispari > 97.7%

Fase di miscelamento del mesone B⁰_s

• Combinatione delle analisi $B_s^0 \rightarrow J/\psi K^+ K^- e B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ (1 fb⁻¹ @ 7 TeV)

Conclusioni

- La violazione di CP nel settore dei quark B è un argomento di grande interesse per
 - fare misure di precisione del MS e controllarne la consistenza
 - ricercare effetti di nuova fisica non previsti nel MS
- LHCb ha raccolto nel 2011 e 2012 una statistica corrispondente ad una luminosità integrata di 3 fb⁻¹
 - Campione di dati contenente un numero elevatissimo di decadimenti di mesoni B
 - Potenziale ancora da sfruttare a pieno con diverse analisi in corso di aggiornamento
- LHCb ha dato un contributo rilevante alle misure sperimentali di violazione di CP nei decadimenti degli adroni B

Conclusioni

- Misure di precisione della matrice CKM
 - $\gamma = (67 \pm 12)^{\circ}$ preliminare
- Ricerca di nuova fisica nei decadimenti mediati da diagrammi a pinguino
 - Prima osservazione della violazione di CP nei decadimenti del B_s⁰
 - − Misura dell'asimmetria di CP nei decadimenti $B^0 \rightarrow \phi K^* e B^+ \rightarrow \phi K^+$
 - − Asimmetrie di CP nei decadimenti $B^+ \rightarrow h^+ h^- \pi^+$
- Misure di violazione di CP nel miscelamento dei mesoni B
 - Asimmetria semileptonica a^s_{sl} del B⁰_s
- Misure della fase di miscelamento del mesone Bs con i decadimenti $B_s^0 \rightarrow J/\psi K^+K^- e B_s^0 \rightarrow J/\psi \pi^+\pi^-$
- Altri risultati omessi per mancanza di tempo e altri ancora in arrivo
- Nessuna evidenza di fisica oltre il MS, ma gli errori sperimentali sono ancora grandi

DIAPOSITIVE DI RISERVA

La presa dati 2011-2012

