

Higgs results and prospects at ATLAS

Stefano Rosati INFN Roma

Introduction

- Introduction on Higgs production and decay at LHC
- Highlights on recent results from the ATLAS experiments
 - Bosonic final states and precision measurements
 - Recent updates on fermionic final states
 - An example of recent results on $H \rightarrow \tau \tau$, $H \rightarrow inv$
- Properties
 - Mass and spin
 - Couplings
- Future prospects on Higgs Physics at ATLAS
 300 fb⁻¹ and 3000 fb⁻¹ at 13-14 TeV
- Link to all ATLAS Higgs public results (RUN1 and Prospects):
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u>
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

Higgs production and decay at LHC

Highlights on recent Run 1 results

High precision channels

 $\gamma\gamma$ and ZZ* \rightarrow 4I: full reconstruction of the final state Measure mass and other properties

γγ:

- Two isolated, high ET and tight quality photons
- Irreducible background from γγ continuum
- Reducible γ-jet and di-jet, DY e+e-
- Event categorization based on signature and kinematics (S/B)

ZZ* →4I:

- Best S/B
- Main backgrounds from ZZ continuum (irreducible)
- Reducible Z+jets, ttbar

Mass combination

- M_{γγ}=126.8 ±0.2 (stat) ±0.7 (syst) GeV
- M₄₁=124.3^{+0.6}_{-0.5}(stat)^{+0.5}_{-0.3}(syst) GeV
- Combined:

M_H=125.5 ±0.2(stat) ^{+0.5}_{-0.6}(syst) GeV

Combined fit of $\Delta M_{H}=2.3^{+0.6}_{-0.7}$ (stat)±0.6 (syst) GeV Masses compatibility at the 2.4 σ level Main uncertainties are photon and electron energy scales

IFAE 2014

Η→ττ

ATLAS-CONF-2013-108

Results on 20.3 fb⁻¹ of data at 8 TeV

$H \rightarrow \tau_{lep} \tau_{lep}$	$H \rightarrow \tau_{lep} \tau_{had}$	$H \rightarrow au_{had} au_{had}$	
BR 12.4%	BR 45.6%	BR 42%	
Very clean	Clean	Large multi-jet	
signature	signature	background	

Two categories in each channel:

- VBF: two jets with $\Delta \eta$ (jj) separation
- **Boosted:** not-VBF and high pT H

Signal/background separation with multivariate analysis

• One BDT for each category

$H \rightarrow \tau \tau$: results

Expected significance @125 GeV 3.2σ Observed significance: 4.1σ

First direct evidence of the Higgs boson decay to fermions

Signal strength $\mu = \sigma / \sigma_{SM} = 1.4 + 0.5_{-0.4}$

Search for invisible decays

- Look for invisible decay in associated production, with Z→II
- Upper limits can be set on the invisible decay BR: BR < 75% @95% C.L. (expected 62%) assuming SM 125.5 GeV Higgs cross section
- The limit can be interpreted in the framework of the Higgs-portal DM scenario

Signal strengths, all channels and combined

ATLAS-CONF-2014-009

 Measure the ratio of the observed rate to the SM expectation

 $\mu = \sigma / \sigma_{SM}$

- At the combined mass M_H=125.5 GeV
- Ratio of the production cross sections fixed to the SM
- No significant deviation from 1 is observed

Combination of all channels, bosonic and fermionic:

μ=**1.30** ^{+0.18} _{-0.17}

10

Sensitivity to VBF production ATLAS-CONF-2014-009

Differential cross sections

- Combined signal+background fits in $H \rightarrow \gamma \gamma$ differential distributions
- Test distributions sensitive to higher-order corrections and different production mechanisms (P^T_{yy}, N_{iets})
- Plus other interesting distributions (e.g. |cos θ*|)

• Within current statistics, no significant deviation from the SM found

More details in the poster by G. Mancini

Spin and parity analyses

- Three channels combined to test different spin-parity hypotheses against SM 0+:
- $H \rightarrow ZZ^* \rightarrow 4I$:
 - Full reconstruction of the final state
 - Multi-variate analysis using five angles and masses of the two Z's
- H→үү:
 - Fit of $|\cos\theta^*| \gamma$ angle w.r.t. the beam axis in the Collins-Soper frame (minize p_T effects)
- $H \rightarrow WW \rightarrow |_{V}|_{V}$
 - Multi-variate analysis with 4 discriminating variables (m_{||}, $\Delta \varphi_{||}, \, p_T{}^{||}, \, m_T)$

Spin and parity results

Expected / observed CL_s for the test of hypotheses alternative to the SM 0+ Green bands are the 68% expected exclusion range, given a 0+ signal All channels combined Scan of the qq production fraction

Couplings fit

ATLAS-CONF-2014-009

• Assume spin-0, CP-even coupling structure, in small-width approximation:

− σ (XX→H)•BR(H→YY)~ $\Gamma_X \Gamma_Y / \Gamma_H$

- Fit deviations from the SM of the couplings strengths, assuming all observations come from the same resonance
- Assume a model, e.g. universal couplings to fermions, bosons:
 - K_F= K_t, K_b, K_t
 - K_V= K_Z, K_W
- Couplings scale ratios independent from assumptions on total width:

Results

¥

 $^{2}E H \rightarrow \tau\tau$

 $H \rightarrow h$

 $\rightarrow \gamma \gamma$

₀ĘH

-2

06

ATLAS Preliminary

 $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.3 \text{ fb}^{-1}$

 $\sqrt{s} = 7 \text{ TeV} \int Ldt = 4.6-4.8 \text{ fb}^{-1}$

0.9

0.8

Fit of the universal vector bosons and fermion couplings (K_v , K_F)

Sensitivity to the sign of K_F only from $H \rightarrow \gamma \gamma$

 Interference between W and t loops in the decay diagram

 K_F =0 excluded at >5 σ level

More details in the poster by A. Gabrielli

ATLAS-CONF-2014-009

41

 $H \rightarrow 4I$

.2

→ lvlv

 $H \rightarrow bb$

 $\kappa_{\rm V}$

Combined Best Fit

Couplings fit summary

Results can be interpreted in different benchmark models:

- The K_v, K_F can be constrained at the ~10-15% level
- $\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$
 - Model-independent Test of the custodial simmetry
- BR (inv. / undetected) < 0.41
 @95% C.L.
- Recently added: fermionic channels
- All results are consistent with the SM

Prospects for the next runs

LHC Plans

Conditions at the start of Run 2 are defined:

L=1.6*10³⁴ cm⁻²s⁻¹

(2508 bunches, 25 ns)

- Run2 and Run3 data taking at 13-14 TeV
- <µ> is the average number of interactions per BC

Run1 7-8 TeV

Higgs Physics at 13-14 TeV

- Int lumi x10 and signal cross section x2.5
 - Precision measurements of Higgs production and decay rates, mass and couplings
 - Couplings tensor structure and CP-violating terms
 - Search for additional BSM Higgs
- ATLAS has built results projections for Run-2, Run-3, and HL-LHC
- Detector response via a parametrization derived from:
 - Run-1 fullsim samples with pileup up to $\langle \mu \rangle = 69$, updated with fullsim of the Phase-1 and Phase-2 detectors for $\langle \mu \rangle$ up to 80-140.
- Analyses similar to Run-1, with some modification and optimization for higher lumi
- Details in the ECFA-Workshop documents:
 - ATLAS-PHYS-PUB-2013-13
 ATLAS-PHYS-PUB-2013-14

Signal strengths with 300 fb⁻¹

ECFA Workshop ATLAS-PHYS-PUB-2013-014

 Systematics as in Run 1, with and without theory errors

Relative errors on signal strenghts with 300 fb⁻¹

Channel	Δμ/μ (%)	Δμ/μ (%) (no th err)	
γγ	14	9	
ZZ	12	6	
WW	13	8	
ττ	22	16	
μμ	39	38	
Zγ	147	145	

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Couplings ratios

Generic test of a fit to coupling ratios: $\lambda_{xy} = K_x/K_y$

No assumption on the total width

Many theory and experimental uncertainties cancel in the ratio

Relative uncertainties range from 4 to 18% with 300 fb⁻¹

Improvement by more than a factor 2 with 3000 fb⁻¹

→ Uncertainties from 1.5 to 9%

ATLAS-PHYS-PUB-2013-014 ECFA WS

22

Couplings prospects

ATLAS-PHYS-PUB-2013-014

- Fit of the universal couplings K_V , K_F
- About 5% 10% precision reachable in the fit to fermions and vector bosons couplings
- **~2.5%** and **~7%** uncertainties on K_v , K_F with 300 fb⁻¹
- Becoming ~1.5% and ~3% with 3000 fb⁻¹

BSM extensions of the Higgs sector lead to ~1%-10% effects on the couplings (e.g. extra EW singlet, 2HDM)

Higgs couplings tensor structure

Most general amplitude describing a Spin-O particle with arbitrary parity decay to vector bosons

SM: g1=1, test for anomalous CP admixtures

ME analysis of the coupling structure:

- Fit optimal ME ratios
- 8D fit of angular and mass variables

(see the posters by G. Grossi and G. Gustavino for more details)

CP mixing expected limits

Luminosity	$ g_4 /g_1$	$\Re(g_4)/g_1$	$\Im(g_4)/g_1$	$ g_2 /g_1$	$\Re(g_2)/g_1$	$\Im(g_2)/g_1$
300 fb ⁻¹	1.03	(-1.01, 1.01)	(-1.02, 1.02)	1.39	(-0.88, 0.38)	(-1.13, 1.13)
3000 fb ⁻¹	0.49	(-0.34, 0.26)	(-0.34, 0.48)	0.81	(-0.33, 0.11)	(-0.73, 0.75)

Expected 95% C.L. limits

Sensitivity to 10%-20% CP-violating admixture with Run2 – Run3 Factor 2-3 improvement with 3000 fb-1

Conclusions

- Summary of the most recent Higgs results of the ATLAS experiment
 - First direct evidence of the Higgs decay to fermions in the $\tau\tau$ channel
 - Mass and couplings
 - Spin and parity
- Prospects for future LHC runs
 - With 300 fb⁻¹ (3000 fb⁻¹)
 - Constraints on couplings in various models
 - Limits on CP mixing couplings

Backup Slides

Search for ttH, $H \rightarrow bb$

ATLAS-CONF-2014-011

- Direct measurement of the top-Higgs Yukawa coupling via ttH production
- Look at two final states:
 - I+jets: 1 e or μ and 4 to ≥6 jets and 2 to ≥4 b-jets
 - Di-lepton: 2 opposite-sign leptons (e,μ) and
 2 to ≥4 jets and 2 to ≥4 b-jets

Cut-based selection for the signal

 Main background after the selection is ttbar+jets

Results on ttH, $H \rightarrow bb$

• 95% CL limit on σ/σ_{SM} is **4.1 observed, 2.6 expected**

Search for invisible decays

- Look for invisible decay in associated production, with Z→II
- Upper limits can be set on the invisible decay BR: BR < 75% @95% C.L. (expected 62%) assuming SM 125.5 GeV Higgs
- The limit can be interpreted in the framework of the Higgs-portal DM scenario

