

On the validity of Effective Field Theory for Dark Matter searches at the LHC

IFAE 2014 - Gran Sasso - 9-11/04/2014

Based on 1307.2253, 1402.1275 and others in preparation EM with G. Busoni, A. De Simone, J. Gramling, T. Jacques, T. Riotto

Astrophysics and cosmology tell us a lot about Dark Matter...

...but we still have no evidence about it's particle nature!

How can we test DM interactions with the Standard Model?

DM at LHC

Produce and detect Dark Matter particles is one of the main goal of the LHC. But...how do we look for them?

- DM is non interacting, so an event like p+p—> DM+DM is invisible
- A good channel to look at is p+p—> DM+DM+jet/photon
- Invisible DM particles "appear" as missing momentum in the transverse plane

At the parton level the process is

FULL THEORIES

- SUSY, KK, Extra dim...
- Many particles and parameters

• 2 parameters: Λ,m_{DM}

Complexity

Domain of validity of EFT

What people (Atlas, CMS) usually do...

- EFT is reliable if $\Lambda \equiv \frac{M}{\sqrt{g_q g_\chi}} > \frac{Q_{\rm tr}}{\sqrt{g_q g_\chi}}$
- To produce DM on shell $Q_{
 m tr} > 2m_{
 m DM}$
- To remain in the perturbative regime $g'{
 m s} < 4\pi$
- The applied condition is then

$$\Lambda > \frac{m_{\rm DM}}{2\pi}$$

See e.g. ATLAS-CONF-2012-147

Domain of validity of EFT

To quantify the goodness/badness of EFT we can compute the cross section with or without imposing the condition on Q_{tr}

$$R_{\Lambda}^{\text{tot}} \equiv \frac{\sigma_{\text{eff}}|_{Q_{\text{tr}} < \Lambda}}{\sigma_{\text{eff}}} = \frac{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta}}$$

•
$$R_{\Lambda} = 1 \Rightarrow EFT \text{ valid}$$

• $R_{\Lambda} < 1 \Rightarrow EFT \text{ not valid}$

To quantify the goodness/badness of EFT we can compute the cross section with or without imposing the condition on Q_{tr}

$$R_{\Lambda}^{\text{tot}} \equiv \frac{\sigma_{\text{eff}}|_{Q_{\text{tr}} < \Lambda}}{\sigma_{\text{eff}}} = \frac{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}$$

 R_{Λ} is a good measure!

- No need to know the UV completion
- $R_{\Lambda} \approx$ fraction of events in the EFT validity region

Good quantity for experimentalists!

Results for D1' at 8 TeV:

- Computed for the full set of s-channel ops at both 8 and 14 TeV
- Only a small dependence on the cuts
- Worse for 14 TeV

Busoni, De Simone, EM, Riotto 1307.2253 Busoni, De Simone, Gramling, EM, Riotto 1402.1275

Implications for LHC searches

Bounds in the Λ vs. $m_{\rm DM}$ plane by ATLAS fall well inside the region of EFT non-validity

Implications for LHC searches

How do these bounds change if we use EFT correctly?

Naïve treatment, need to understand pT distribution with the Q_{tr} cut

Conclusions

1.EFTs are a very simple tool for searches of Dark Matter (and not only!) at the LHC;

2.Unfortunately, due to the high energy reach, their usage have strong limitations;

3.It's time to look for alternatives! Symplified models seem to be the way.

4.More parameters to constraint: how do we present results?

Contours for the full set of operators at 8 & 14 TeV:

Results for t-channel operators

Operators in the t-channel show a similar behaviour

Busoni, De Simone, Jacques, EM, Riotto, coming soon

Comparison with MonteCarlo simulations

We computed the quantity R_{Λ} using MadGraph5

- Better comparison with experimentalists' techniques
- Includes hadronization of jets
- Includes quark-initiated jets

Comparison with MonteCarlo simulations

We computed the quantity R_{Λ} using MadGraph5

- Better comparison with experimentalists' techniques
- Includes hadronization of jets
- Includes quark-initiated jets

2: Comparison with UV completion

Complete the D1' lagrangian by adding a scalar field as a mediator $\mathcal{L}_{\mathrm{D1'}} = \frac{1}{\Lambda^2} (\bar{\chi}\chi)(\bar{q}q) \iff \mathcal{L}_{\mathrm{UV}} \supset \frac{1}{2} M^2 S^2 - g_q \bar{q}q S - g_\chi \bar{\chi}\chi S$ Computed analitically at parton level assuming Compute the ratio between the two cross sections Compute the ratio between the two cross sector $r_{\rm UV}$ $r_{\rm UV/eff} \equiv \frac{\sigma_{\rm UV}|_{Q_{\rm tr} < M}}{\sigma_{\rm eff}|_{Q_{\rm tr} < \Lambda}} = \frac{\int_{p_{\rm T}^{\rm min}}^{1 \,{\rm TeV}} \mathrm{d}p_{\rm T} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\rm UV}}{\mathrm{d}p_{\rm T} \mathrm{d}\eta} \right|_{Q_{\rm tr} < M}}{\int_{p_{\rm T}^{\rm min}}^{1 \,{\rm TeV}} \mathrm{d}p_{\rm T} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\rm eff}}{\mathrm{d}p_{\rm T} \mathrm{d}\eta} \right|_{Q_{\rm tr} < M}}$ jet = emitted gluon Integrated over PDFs imposing the condition on Q_{tr} Integrated over pT and n of the jet Experimental cuts on pT $p_T = 120 \text{ GeV}, \eta = 0$ 10² $\Lambda = M = 2.5 \text{ TeV}, \eta = 0$ 10^{2} and n m_{DM}=10 GeV $p_T = 120 \text{ GeV}$ m_DM=200 GeV $p_T = 350 \text{ GeV}$ mDM=500 GeV UV/eff UV/eff $p_T = 500 \, \text{GeV}$ -m_{DM}=1000 GeV 10 10³ 10 10^{2} 10^{4} 10^{3} $\Lambda = M [GeV]$ m_{DM} [GeV]

ATLAS limits

Implications for LHC searches

Very naively, neglecting the statistical and systematical uncertainties, the number of signal events in a given EFT model has to be less than the experimental observation, $N_{\text{signal}}(\Lambda, m_{\text{DM}}) < N_{\text{expt}}$. The cross section due to an operator of mass dimension d scale like $\Lambda^{-2(d-4)}$, so $N_{\text{signal}}(\Lambda, m_{\text{DM}}) = \Lambda^{-2(d-4)}\tilde{N}_{\text{signal}}(m_{\text{DM}})$, and the experimental lower bound in the scale of the operator becomes

$$\Lambda > \left[\tilde{N}_{\text{signal}}(m_{\text{DM}})/N_{\text{exp}}\right]^{1/[2(d-4)]} \equiv \Lambda_{\text{expt.}} \,. \tag{4.1}$$

Now, if we do not consider any information about the shapes of the $p_{\rm T}$ or MET distributions, the experimental bound only comes from the total number of events passing given cuts. The fact that a fraction of the events involve a transfer momentum exceeding the cutoff scale of the EFT means that the number of signal events for placing a limit gets reduced by a factor $R_{\Lambda}^{\rm tot}$. Therefore, actually $N_{\rm signal}(\Lambda, m_{\rm DM}) \rightarrow R_{\Lambda}^{\rm tot}(m_{\rm DM})N_{\rm signal}(\Lambda, m_{\rm DM})$, so the new limit is found by solving the implicit equation

$$\Lambda > [R_{\Lambda}^{\text{tot}}(m_{\text{DM}})]^{1/2[(d-4)]} [N_{\text{signal}}(m_{\text{DM}})/N_{\text{exp}}]^{1/[2(d-4)]} = [R_{\Lambda}^{\text{tot}}(m_{\text{DM}})]^{1/[2(d-4)]} \Lambda_{\text{expt}}$$
(4.2)

and it turns out to be weaker than Λ_{expt} .

Busoni, De Simone, Gramling, EM, Riotto 1402.1275

To quantify the goodness/badness of EFT we can compute the cross section with or without imposing the condition on Q_{tr}

$$R_{\Lambda}^{\text{tot}} \equiv \frac{\sigma_{\text{eff}}|_{Q_{\text{tr}} < \Lambda}}{\sigma_{\text{eff}}} = \frac{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}$$

- Cross sections computed analitically at parton level assuming jet = emitted gluon
- Integrated over PDFs imposing the condition on Q_{tr}
- Integrated over pT and η of the jet
- Experimental cuts on pT and η

To quantify the goodness/badness of EFT we can compute the cross section with or without imposing the condition on Q_{tr}

$$R_{\Lambda}^{\text{tot}} \equiv \frac{\sigma_{\text{eff}}|_{Q_{\text{tr}} < \Lambda}}{\sigma_{\text{eff}}} = \frac{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}{\int_{p_{\text{T}}^{\text{min}}}^{1 \text{ TeV}} \mathrm{d}p_{\text{T}} \int_{-2}^{2} \mathrm{d}\eta \left. \frac{\mathrm{d}^{2} \sigma_{\text{eff}}}{\mathrm{d}p_{\text{T}} \mathrm{d}\eta} \right|_{Q_{\text{tr}} < \Lambda}}$$

 R_{Λ} is a good measure!

- No need to know the UV completion
- $R_{\Lambda} \approx$ fraction of events in the EFT validity region

Good quantity for experimentalists!