Risultati recenti sullo studio di stati di charmonio a *BABAR*

Elisa Fioravanti

INFN Ferrara On behalf of the BABAR Collaboration

Incontri di fisica delle alte energie 9-11th April 2014

Introduction

- Study of $B^{0,\pm} \to J/\psi K^+ K^- K_S^{0,\pm}$ and search for $B^0 \to J/\psi \phi$ Preliminary results
- Dalitz plot analysis of $\eta_c \to K^+ K^- \eta$ and $\eta_c \to K^+ K^- \pi^0$ in two photon interactions Preliminary results
- Summary

The BABAR experiment and data sample

BABAR is a B factory: 467 million $B\overline{B}$ pairs in the total data sample. BABAR is also a *c* factory: 1.3 million charm events per fb⁻¹.

Charmonium spectrum

- Below the DD threshold, all expected states have been observed, with properties in good agreement with theory; there are no additional states.
- Many unexpected states have been reported above the $D\bar{D}$ threshold, seemingly too many with $J^{PC} = 1^{--}$. Several exotic hypotheses as to their nature: tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.
- These result mainly from Belle and *BABAR*, with significant contributions also from CDF, D0, CLEO, LHCb and BES.

Eur. Phys. J.C71, 1534 (2011)

Risultati recenti sullo studio di stati di charmonio a BABAR

Experimental methods for charmonium production at the B-factories

B meson decays

States of any quantum numbers can be produced

Initial State Radiation (ISR)

Only states with J^{PC} = 1⁻⁻ can be produced

Two-photon production

Only states with $J^{PC} = 0^{\pm +}, 2^{\pm +}, 4^{\pm +}, \dots, 3^{++}, 5^{++}, \dots$ can be produced

Double charmonium production

Only charmonium states with C=+1 are allowed to be produced in association with the J/w or the w(2S)

Study of
$$B^{0,\pm} \to J/\psi K^+ K^- K^{0,\pm}_S$$
 and search for $B^0 \to J/\psi \phi$

Study of $B^{0,\pm} \rightarrow J/\psi K^+ K^- K_S^{0,\pm}$ and search for $B^0 \rightarrow J/\psi \phi$ Preliminary results

2009 + 2011

CDF studied the decay mode: $B^+ \rightarrow J/\psi\phi K^+$; $\phi \rightarrow K^+K^-$; $J/\psi \rightarrow \mu^+\mu^-$ The observed two narrow peaks, looking at the $J/\psi\phi$ invariant mass, named X(4140) and X(4270). PRL102,242002(2009) arXiv:1101.6058(2011)

2012

LHCb did not confirm these peaks 2.4 σ disagreement with CDF PRD85,091103(2012)

2013

CMS confirmed the presence of the two resonances arXiv:1309.6920(2013)

2014

D0 saw evidence for the two resonances PRD89,012004(2014)

2009

Belle did the study (unpublished) Unable to conclude due to low efficiency at threshold Lepton-Photon Conference 2009

Summary of the previous results

	X(4140)		X(4270)			
Reference	Mass	Width	Significance	Mass	Width	Significance
	(MeV/c^2)	(MeV)		(MeV/c^2)	(MeV)	
CDF	$4143 \pm 2.9 \pm 1.2$	$11.7 {}^{+8.3}_{-5.0} \pm 3.7$	3.8 <i>0</i>	Possible signal		
PRL102,242002(2009)						
CDF	4143.4 ^{+2.9} _{-3.0} ± 0.6	$15.3 ^{+10.4}_{-6.1} \pm 2.5$	$>5\sigma$	4274.4 $^{+8.4}_{-6.7} \pm 1.9$	$32.3 ^{+21.9}_{-15.3} \pm 7.6$	3.1 <i>o</i>
arXiv:1101.6058						
LHCb	No signal		No signal;			
PRD85,091103(R) (2012)				excess	at $\sim 4.3~GeV/c^2$	
D0	$4159 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6 \ ^{+3.0}_{-8.0}$	3.10	~ 4360	30.0 (fixed)	1.7σ
PRD89,012004(2014)						
CMS	$4148.0 \pm 2.4 \pm 6.3$	$28 {}^{+15}_{-11} \pm 19$	$>5\sigma$	$4313.8 \pm 5.3 \ \pm \ 7.3$	$38 {}^{+30}_{-15} \pm 16$	-
arXiv:1309.6920						

BABAR analysis

- Study of the processes $B^0 \rightarrow J/\psi K^+ K^- K_S^0$, $B^{\pm} \rightarrow J/\psi K^+ K^- K^{\pm}$ and $B^0 \rightarrow J/\psi \phi$
 - $J/\psi \rightarrow e^+e^-$; $\mu^+\mu^-$ and $\phi \rightarrow K^+K^-$
 - The full $\Upsilon(4S)$ BABAR dataset has been used, 424 fb⁻¹
 - Perform the branching fraction and branching ratio measurements
 - Search for the resonances X(4140) and X(4270) in the $J/\psi\phi$ invariant mass distribution
 - Search for the suppressed decay $B^0 \rightarrow J/\psi \phi$

Unbinned maximum likelihood fits to the m_{ES} distributions are performed to determine the yields and obtain BF and BR measurements.

$$m_{ES} = \sqrt{((s/2 + \vec{p_i} \cdot \vec{p_B}/E_i)^2 - \vec{p_B}^2)^2}$$

Branching fraction

Observation of a clear $\phi \rightarrow K^+K^-$ signal:

Branching Fraction Measurements

B channel	Event yield	$\mathcal{B}~(imes 10^{-5})$
$B^+ \rightarrow J/\psi K^+ K^- K^+$	595^{+32}_{-31}	$6.05 \pm 0.33 \text{ (stat)} \pm 0.24 \text{ (sys)}$
$B^+ \rightarrow J/\psi \phi K^+$	200 ± 14	$4.57 \pm 0.32 \text{ (stat)} \pm 0.13 \text{ (sys)}$
$B^0 ightarrow J/\psi K^- K^+ K^0_S$	74 ± 12	$3.55 \pm 0.57 \text{ (stat)} \pm 0.15 \text{ (sys)}$
$B^0 ightarrow J/\psi \phi K^0_S$	50 ± 7	$2.53 \pm 0.35 \text{ (stat)} \pm 0.09 \text{ (sys)}$

CDF, LHCb, D0, and CMS, do not obtain BF measurements.

< □ > < 向

$$\begin{aligned} R_{+} &= \frac{\mathcal{B}(B^{+} \to J/\psi K^{+} K^{-} K^{+})}{\mathcal{B}(B^{+} \to J/\psi \phi K^{+})} = 1.32 \pm 0.12 \pm 0.07 \\ R_{0} &= \frac{\mathcal{B}(B^{0} \to J/\psi K^{+} K^{-} K^{0}_{S})}{\mathcal{B}(B^{0} \to J/\psi \phi K^{0}_{S})} = 1.40 \pm 0.30 \pm 0.08 \end{aligned}$$

 R_+ and R_0 are the same within error, indicating that the fraction of ϕ production is the same for the B^{\pm} and B^0 decay modes.

$$\begin{split} R_{\phi} &= \frac{\mathcal{B}(B^0 \to J/\psi \phi K_S^0)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} = 0.55 \pm 0.10 \pm 0.02 \\ R_{2K} &= \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_S^0)}{\mathcal{B}(B^+ \to J/\psi K^+ K^- K^+)} = 0.59 \pm 0.13 \pm 0.03 \end{split}$$

The ratio of the BFs for the B^{\pm} and B^{0} decay modes involving the ϕ is the same within error as that for the $J/\psi KKK$ final states.

CDF, LHCb, D0, and CMS, do not obtain any such BR measurements.

Search for resonances in the $J/\psi\phi$ mass spectrum

We search for the resonant states claimed by CDF in the $J/\psi\phi$ mass spectrum.

- Ingredients:
 - Background: a uniform distribution (i.e. phase space)
 - Signal: two incoherent S-wave relativistic Breit-Wigner distributions with fixed mass and width values (because of limited statistics):

X(4140): m=4143.4 MeV/c², Γ = 15.3 MeV X(4270): m=4274.4 MeV/c², Γ = 32.3 MeV from CDF arXiv:1101.6058

- 2D efficiency map taken into account in the fit
- Results of the fit:
 - Fit with two CDF resonances:
 - $\chi^2/NDF = 17.2/13$ (red curve)
 - Fit with no resonances:

$$\chi^2/NDF = 24.0/15$$
 (blue curve)

The BABAR Preliminary fit fractions, for the fit assumption of two resonances, are as follows:

```
f (4140)=(7.3±2.5±3.8)%; UL(90% CL)=12.1%
f (4270)=(7.7±3.7±5.2)%; UL(90% CL)=16.4%
```

From the other experiments:

Experiments	f (4140) [%]	f (4270) [%]
CDF	$14.9\pm2.9\pm2.4$	-
LHCb	<7	< 8
D0	$19\pm7\pm4$	-
CMS	13.4 ± 3.0 (*)	18.0 ± 7.3 (*)

(*) Estimated from number of signal events quoted

We find that the hypothesis that the events are distributed uniformly on the Dalitz plot gives a worse description of the data, although, in order to access the presence of resonant behavior, higher statistics and a full Dalitz plot analysis are needed.

Search for the decay $B^0 \rightarrow J/\psi \phi$

We search for the decay $B^0 \rightarrow J/\psi \phi$ which is suppressed.

(*) UL(90% CL)

No evidence for this decay.

Dalitz plot analysis of $\eta_c \to K^+ K^- \eta$ and $\eta_c \to K^+ K^- \pi^0$

We study the reactions $\gamma_1^*\gamma_2^* \to K^+K^-\eta$ and $\gamma_1^*\gamma_2^* \to K^+K^-\pi^0$

and perform Dalitz plot analyses for the decays $\eta_c \to K^+ K^- \eta$ and $\eta_c \to K^+ K^- \pi^0$. **Preliminary results**

- Many $\eta_c(1S)$ and $\eta_c(2S)$ decays are still missing or have been studied only with low statistics.
- The sum of the measured BF's for the $\eta_c(1S)$ is only ~20%, while that for the $\eta_c(2S)$ is <5% PRD 86, 010001 (2012).
- BESIII (PRD 86,092009(2012)) has reported measurements of η_c branching fractions via the decay sequence $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \eta_c$ but they obtained only $N(\eta_c \rightarrow K^+ K^- \eta) = 6.7 \pm 3.2$ events and $N(\eta_c \rightarrow K^+ K^- \pi^0) = 54.9 \pm 9.2$ events.
- No Dalitz plot analysis has been published for $\eta_{\rm c}$ decay to three pseudoscalar mesons.
- It turns out that η_c decays provide new information on scalar-meson states and on gluonic state candidates.
- We use an integrated luminosity of 519 fb^{-1} to study the reactions:

$$\begin{array}{c} \gamma\gamma \rightarrow {\cal K}^+{\cal K}^-\eta \\ \text{with:} \ \eta \rightarrow \gamma\gamma \ \text{or} \ \eta \rightarrow \pi^+\pi^-\pi^0 \\ \gamma\gamma \rightarrow {\cal K}^+{\cal K}^-\pi^0 \end{array}$$

and report preliminary results

Mass spectra

First observation of $\eta_c \to K^+ K^- \eta$ First evidence of $\eta_c(2S) \to K^+ K^- \eta$

< 口 > < 同

Channel	Event Yield	${\cal R}$	Significance
$\eta_c \rightarrow K^+ K^- \pi^0$	$4518 \pm 131 \pm 50$		32σ
$\eta_c { ightarrow} K^+ K^- \eta \; (\eta { ightarrow} \gamma \gamma)$	$853\pm38\pm11$		21σ
${\cal B}(\eta_c{ ightarrow} K^+K^-\eta)/{\cal B}(\eta_c{ ightarrow} K^+K^-\pi^0)$		$0.602 \pm 0.032 \pm 0.065$	
$\eta_c { ightarrow} K^+ K^- \eta \; (\eta { ightarrow} \pi^+ \pi^- \pi^0)$	$292\pm20\pm7$		14σ
${\cal B}(\eta_c{ ightarrow} K^+K^-\eta)/{\cal B}(\eta_c{ ightarrow} K^+K^-\pi^0)$		$0.523 \pm 0.040 \pm 0.083$	
$\eta_c(2S) { ightarrow} K^+ K^- \pi^0$	$178\pm29\pm39$		3.7 σ
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$47\pm9\pm3$		4.9σ
$\mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \eta) / \mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \pi^0)$)	$0.82 \pm 0.21 \pm 0.27$	
$\chi_{c2} { ightarrow} K^+ K^- \pi^0$	$88\pm27\pm23$		2.5σ
$\chi_{c2} { ightarrow} K^+ K^- \eta$	$2\pm5\pm2$		0.0 σ

Weighted mean of the BR values for the two η decay modes:

$$\mathcal{R}(\eta_c) = rac{\mathcal{B}(\eta_c
ightarrow K^+ K^- \eta)}{\mathcal{B}(\eta_c
ightarrow K^+ K^- \pi^0)} = 0.571 \pm 0.025 \pm 0.051$$

BESIII: $\mathcal{R}(\eta_c)=0.46\pm0.23$ (PRD 86,092009(2012)). For the $\eta_c(2S)$ ($\eta \rightarrow \gamma \gamma$ only):

$$\mathcal{R}(\eta_c(2S)) = rac{\mathcal{B}(\eta_c(2S) o K^+ K^- \eta)}{\mathcal{B}(\eta_c(2S) o K^+ K^- \pi^0)} = 0.82 \pm 0.21 \pm 0.27$$

< □ > < 同 >

E ▶

Dalitz plot analyses of $\eta_c \rightarrow K^+ K^- \eta$

We perform Dalitz plot analyses of the $K^+K^-\eta$ system in the η_c mass region using unbinned maximum likelihood fits, which take into account background from the η_c sideband regions (yellow histograms).

Fit results:

Final state	Fraction %			
$f_0(1500)\eta$	$23.7 \pm 7.0 \pm 1.8$			
$f_0(1710)\eta$	$8.9 \pm \ 3.2 \pm \ 0.4$			
$K_0^*(1430)^+K^-$	$16.4 \pm 4.2 \pm 1.0$			
$f_0(2200)\eta$	$11.2 \pm 2.8 \pm 0.5$			
$K_0^*(1950)^+K^-$	$2.1 \pm ~1.3 \pm ~0.2$			
$f_{2}'(1525)\eta$	$7.3 \pm \ 3.8 \pm \ 0.4$			
$f_0(1350)\eta$	$5.0 \pm \ 3.7 \pm \ 0.5$			
$f_0(980)\eta$	$10.4 \pm \ 3.0 \pm \ 0.5$			
NR	$15.5 \pm \ 6.9 \pm \ 1.0$			
Sum	$100.0 \pm 11.2 \pm 2.5$			
χ^2/ν	87/65			

Significant contributions from $f_0(1500)\eta$ and $f_0(1700)\eta$ (both gluonium candidates)

Note: $K^{*+}K^-$ notation represents the amplitude which has been symmetrized in order that the decay conserve C-parity.

(日)

Dalitz plot analyses of $\eta_c \rightarrow K^+ K^- \pi^0$

We perform Dalitz plot analyses of the $K^+K^-\pi^0$ system in the η_c mass region using unbinned maximum likelihood fits, which take into account background from the η_c sideband regions (yellow histograms).

- The $K^{\pm}\pi^{0}$ mass spectrum is dominated by the $K_{0}^{*}(1430)$ resonance

F	Fit results:			
Final state	Fraction %			
$K_0^*(1430)^+K^-$	33.8 \pm	$1.9~\pm$	0.4	
$K_0^*(1950)^+K^-$	$6.7 \pm$	$1.0 \pm$	0.3	
$a_0(980)\pi^0$	$1.9 \pm$	$0.1 \pm$	0.2	
$a_0(1450)\pi^0$	10.0 \pm	$2.4 \pm$	0.8	
$a_2(1320)\pi^0$	$2.1 \pm$	$0.1 \pm$	0.2	
$K_2^*(1430)^+K^-$	$6.8 \pm$	$1.4 \pm$	0.3	
NR	24.4 \pm	$2.5~\pm$	0.6	
Sum	$85.8~\pm$	$3.6 \pm$	1.2	
χ^2/ν		212/130		

.

Significant contributions from $K_0^*(1430)$

Note: $K^{*+}K^-$ notation represents the amplitude which has been symmetrized in order that the decay conserve C-parity.

(日) (同) (三) (三)

$K_0^*(1430)$ parameters

From the Dalitz plot analysis of both $\eta_c \to K^+ K^- \eta$ and $\eta_c \to K^+ K^- \pi^0$ we perform a likelihood scan to obtain the best-fit parameters for the K_0^* (1430).

 $\begin{array}{rl} m({\cal K}_0^*(1430)) &=& 1438 \,\pm\, 8 \,\pm\, 4 \,\, {\rm MeV/c^2} \\ {\rm Good\ agreement\ with\ LASS\ experiment\ (Nucl.Phys.B\ 296,\ 493(1988))} \\ \Gamma({\cal K}_0^*(1430)) &=& 210 \,\pm 20 \,\pm 12 \,\, {\rm MeV} \\ {\rm 3}\sigma \ {\rm smaller\ than\ then\ LASS\ result\ (Nucl.Phys.B\ 296,\ 493(1988))} \end{array}$

We obtain also the $K_0^*(1430)$ branching ratio:

 $rac{\mathcal{B}(K_0^*(1430) o \eta K)}{\mathcal{B}(K_0^*(1430) o \pi K)} = 0.092 \pm 0.025^{+0.010}_{-0.025}$

- New results on the $B \rightarrow J/\psi \phi(K)$ channel:
 - Branching fraction and branching ratio measured
 - X(4140) and X(4270): no definite conclusion on their existence
 - No significant signal found in $B
 ightarrow J/\psi \phi$
- New results on $\eta_c \to K^+ K^- \pi^0$ and $\eta_c \to K^+ K^- \eta$.
 - Large signal seen in both channels
 - First observation of $\eta_c \to K^+ K^- \eta$ and first evidence for $\eta_c(2S) \to K^+ K^- \eta$
 - First Dalitz plot analysis of these decays
 - First observation of the decay ${\sf K}_0^*(1430) o {\sf K}^\pm \eta$ and first time seen as a peak

- Quarkonium spectroscopy is a very interesting field, many new exotic states have been discovered in recent years;
- Still many missing pieces need to be found to have the full picture;
- The BABAR experiment switched off in 2008, but still produces many interesting results!
 - 529 papers in total
 - 26 papers in 2013

THANKS FOR YOUR ATTENTION!