new perspectives on Feynman Integral Calculus

Pierpaolo Mastrolia

Max Planck Institute for Physics, Munich Physics and Astronomy Dept., University of Padova

Motivation

Seldentify a unique Mathematical framework for any Multi-Loop Amplitude

Simplify the calculations in High-Energy Physics

Computing the uncomputable

Discover hidden properties of Quantum Field Theories

Path

Scattering Amplitudes in QFT

Unitarity and Analyticity

Poles and Residues

Amplitudes Decomposition

Unitarity-based methods and Cauchy's Residue Theorem

Multiloop Integrand Reduction and principles of Algebraic Geometry

Application: H+3jets and HtTj production at NLO

Application: beyond one-loop

Differential Equations for Feynman Integrals: Magnus Exponential

Conclusions

Origins

1. What is the major discovery of the mankind?

2. What is the major invention of the mankind?

3. How do human beings acquire knowledge?

Origins

- 1. What is the major discovery of the mankind? The Fire
- 2. What is the major invention of the mankind? The Wheel
- 3. How do human beings acquire knowledge? By successive approximation

Origins

- 1. What is the major discovery of the mankind? The Fire
- 2. What is the major invention of the mankind? The Wheel
- 3. How do human beings acquire knowledge? By successive approximation

What Particle Physics has to do with that?

• Focusing energy in one point

• Energy from collisions

• usefulness of circular shapes

Exponential function

Perturbation Theory

- Goal :: Discovery = Caos Known
- Tool :: Factorization Hypothesis => Observables = Non-Perturbative x Perturbative

Perturbative Approach

- organize the knowledge in successive approximations
- delaying our ignorance to higher-orders

Anatomy of the Scattering Process

Scattering main

$$S_{fi} = \lim_{\substack{t_1 \to +\infty \\ t_2 \to -\infty}} \langle \phi_f | U(t_1, t_2) | \phi_i \rangle = \delta_{fi} + i(2\pi)^4 \delta^{(4)}(p_f - p_i) M_{fi}.$$

The transition rate for a transition from the initial state i to the final state f per unit time is

 $w_{fi} = \frac{|S_{fi}|^2}{T}$

total scattering cross section $\sigma(a+b \rightarrow 1+2+...+n)$

 $\sigma = \frac{\#\text{transitions per unit of time}}{\#\text{incoming particles per surface per time}} = \frac{w_{fi}}{\text{flux}} \qquad \text{flux} = \frac{\#\text{particles}}{\text{volume}} \cdot |\text{relative velocity}|$

The cross section is given by

$$\sigma = \frac{1}{2s} \int d\phi_n (p_1, \dots, p_n; Q) \frac{1}{S} \sum_{\text{spin}} |M_n|^2$$

where Q is the total incoming momentum, $(s = Q^2)$ and

$$\mathrm{d}\phi_n = (2\pi)^4 \delta^d \left(Q^\mu - \sum_{j=1}^n p_j^\mu \right) \prod_{j=1}^n \frac{\mathrm{d}^d p_j}{(2\pi)^{d-1}} \delta_+ \left(p_j^2 - m_j^2 \right)$$

• Feynman Diagrams

Squared Amplitude

Perturbation Theory & Feynman Diagrams

@extracting IR-singularities from both and combining them

phase-space slicing, subtractions, dipoles, antennas

Front-line in Theoretical Particle Physics

@ LHC Phenomenology

p-p collision @ 14 TeV c.m.e.

Signals:

- Decays: $H \rightarrow VV$ $(V = \gamma, W, Z)$
- $PP \rightarrow H+0, 1, 2$ jets (Gluon Fusion)
- $PP \rightarrow H + 2$ jets (Weak Boson Fusion)
- $PP \rightarrow H + t\bar{t}$

000

000

• $PP \rightarrow H + W, Z$

Backgrounds:

000

- $PP \rightarrow t\bar{t} + 0, 1, 2$ jets
- $PP \rightarrow VV + 0, 1, 2$ jets
- $PP \rightarrow V + 0, 1, 2, 3$ jets
- $PP \rightarrow VVV + 0, 1, 2, 3$ jets

Front-line in Theoretical Particle Physics

- @ LHC Phenomenology
- @ QFT Stucture
- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)
- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

Front-line in Theoretical Particle Physics

- @ LHC Phenomenology
- @ QFT Stucture
- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)

=

- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory
- Exploring the Finiteness of Supergravity

High Energy Physics Goals: Loops vs Legs

Complexity: Loops vs Legs

Complexity: Loops vs Legs

Feynman Diagrams Complexity

four photon amplitude

All-plus photon helicity-amplitude = $-8 + O(\epsilon)$

Feynman Diagrams Complexity

• n+2 gluon tree-amplitude $gg \rightarrow gg...g$ $\frac{n}{\# \text{ of diagrams}} \begin{vmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 4 & 25 & 220 & 2485 & 34300 & 559405 & 10525900 \\ \hline$

♀ 5-gluon case (n=3)

م، مست ، مشت ، من خوان ، معلم ، معلم ، مع خون ، معلم ((شفر ، غر
1. 1994 - 1994 - 1994 - 19 - 19 - 19 - 19
1
1 - 101 - 104 - 104 - 10 - 10 - 10 - 10
1. 17 m 18 2. 19 m 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1-84 150 194 14 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
الارداري المراجع
1. 441 min min to the same and the same to the same to the same to the same same to the same same same same sa
4 .04 .00 . 44 .02 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
al - 4-13 - 4-14 - 4-14 - 6-14
h - + h
में ने हैं। जे हैं। जहीं ने की ने देवी ने की से रहे के जी ने की राज्य राज्य त्या कर का कि नहीं नहीं। नहीं नहीं न
a) - 10 a) - 10 a) - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
2) - 20 20 - 40 20 - 10 20 - 10 2 - 10 20 - 10 20 - 10 20 - 10 - 1
(1) μήται (1) την
a) - and - and - and - a) - a
an - an an - and a - and - an
n-13-1-44 1-94 - 4 - 4 - 43 - 54 - 52 - 61 - 13 - 14 - 13 - 14 - 17 - 1 - 14 - 14 - 14 - 14 - 14
a) at p. Oat, whi = 0 (p. 10)
a) (1) a) (a) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
a) an [a] a) [a] a) [a] a) a [a] [a] [a] [a] [a] [a] [a] [a] [a] [
47. 42.81 · 41.61 · 61.61 · 61. + 61 · 12.81 · 62 · 12.61 · 63 · 63 · 12.62 · 63.62 · 64.61 · 64 · 64 · 65 · 65 · 65 · 66 · 66 · 66
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
ավերական հայտներին, ավելավերին, հայտներին, ավելական հայտներական հայտներին, հետ հայտներին, հետ հայտներին, հետ հե
الم المرابع الم
24, 4a,4a,-24,)

કે (છું, ચૂક્યું, ગુપ્તું, ગુપ્તુ, ગુપ્તું, ગુપ્તું, ગુપ્તું, ગુપ્તું, ગુપ્તુ, ગુપ્તું, ગુપ્તુ, ગુપ્

All-plus helicity = 0 Single-minus helicity = 0 Two-minus => $\mathcal{A}_n(1^-, 2^+, \dots, m^-, \dots, n^+) = ig^{n-2} \frac{\langle 1m \rangle^4}{\langle 12 \rangle \cdots \langle (n-1)n \rangle \langle n1 \rangle}$

Looking for Simplicity behind Complexity?

Process-Independent Strategy

Properties of the S-Matrix

- a general mathematical property: Analyticity of Scattering-Amplitudes
 - Scattering Amplitudes are determined by their poles and branch-cuts
- a general physical property: Unitarity of Scattering-Amplitudes
 The <u>residues</u> at poles and branch-points are products of <u>simpler amplitudes</u>, with lower number of particles and/or less loops

Multi-pole expansion of Scattering Amplitudes

Amplitudes Decomposition: *the algebraic way*

 $\mathbf{a} = \mathbf{a} \mathbf{x} \mathbf{i} + \mathbf{a} \mathbf{y} \mathbf{j} + \mathbf{a} \mathbf{z} \mathbf{k}$

Basis: {**i j k**}

Scalar product/Projection: to extract the components

> $a_x = a.i$ $a_y = a.j$

 $a_z = a.k$

Projections :: On-Shell Cut-Conditions

Completeness Relations: cutting "1"

• the richness of factorization

$$\sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = 1$$

$$\sum_{n=0}^{N-1} \frac{e^{2\pi i \frac{k}{N}n}}{\sqrt{N}} \frac{e^{-2\pi i \frac{k'}{N}n}}{\sqrt{N}} = \delta_{kk'}$$

Completeness Relations: cutting propagators

massless Spin-1

$$-i\frac{g^{\mu\nu}}{k^2-i0}$$

 $\frac{1}{k^2 - i0} \rightarrow \begin{array}{c} \delta(k^2) \\ \text{on-shell} \end{array} \Rightarrow -g^{\mu i}$

$$\mu
u \rightarrow \sum_{\text{polarization}-\lambda} \epsilon^{\mu}_{\lambda}(k) \left(\epsilon^{\nu}_{\lambda}(k)\right)^{*}$$
residue

massive fermions

$$i\frac{(\not p+m)}{p^2-m^2-i0}$$

$$\frac{1}{p^2 - m^2 - i0} \rightarrow \underbrace{\delta(p^2 - m^2)}_{\text{on-shell}} \Rightarrow \underbrace{(\not p + m)}_{spin - s} \rightarrow \underbrace{\sum_{spin - s} u_s(p) \ \bar{u}_s(p)}_{spin - s} \text{ residue}$$

On-shellness for Tree-Level Amplitudes

Cauchy's Residue Theorem

On-shellness for Tree-Level Amplitudes

Cauchy's Residue Theorem

Partial Fractioning

$$\oint \frac{dz}{z(z-z_1)(z-z_2)\cdots(z-z_n)} = 0$$

$$\frac{(-1)}{z_1 z_2 \cdots z_n} = \frac{1}{z_1 (z_1 - z_2) \cdots (z_1 - z_n)} + \frac{1}{(z_2 - z_1) z_2 \cdots (z_2 - z_n)} + \frac{1}{(z_n - z_1) (z_n - z_2) \cdots (z_n - z_{n-1}) z_n}$$

On-shellness for Tree-Level Amplitudes

Cauchy's Residue Theorem

Partial Fractioning

On-shell condition (cuts)

$$(q_i - z_i \eta)^2 - m_i^2 = 0$$
, $z_i = \frac{q_i^2 - m_i^2}{2\eta \cdot q_i}$,

Denominator decomposition

$$(-1)\frac{1}{q_1^2 - m_1^2}\frac{1}{q_2^2 - m_2^2}\cdots\frac{1}{q_n^2 - m_n^2} = \frac{1}{q_1^2 - m_1^2}\frac{1}{(q_2 - z_1\eta)^2 - m_2^2}\cdots\frac{1}{(q_n - z_1\eta)^2 - m_n^2} + \frac{1}{(q_1 - z_2\eta)^2 - m_1^2}\frac{1}{q_2^2 - m_2^2}\cdots\frac{1}{(q_n - z_2\eta)^2 - m_n^2} + \dots + \frac{1}{(q_1 - z_n\eta)^2 - m_1^2}\frac{1}{(q_2 - z_n\eta)^2 - m_2^2}\cdots\frac{1}{q_n^2 - m_n^2}$$

Tree-Level Amplitudes

Cauchy's Residue Theorem

$$\frac{1}{2\pi i} \oint \frac{\mathcal{A}_n(z)}{z} = \mathcal{A}_n(\infty) = \mathcal{A}_n(0) + \sum_{\text{poles}} \text{Res}\mathcal{A}_n(z)$$

If $\mathcal{A}_n(\infty) = 0$, then one obtaines the relation

 $\mathcal{A}_n(0) = -\sum_{\text{poles}} \text{Res}\mathcal{A}_n(z)$

$$\mathcal{A}_n(p_1^{h_1},\ldots,p_n^{h_n}) = \sum_{\text{partition } h} \mathcal{A}_L(p_r,\ldots,\hat{p}_i,\ldots,p_s,-\hat{P}_{r:s}^h) \frac{1}{P^2} \quad \mathcal{A}_R(\hat{P}_{r:s}^h,p_{s+1},\ldots,\hat{p}_j,\ldots,p_{r-1})$$

BCFW Recurrence Relation

Britto, Cachazo, Feng, Witten

% Multi-pole expansion of Tree-level Amplitudes!

Tree-level decomposition by *partial fractioning*: is this an accident?

One-Loop Scattering Amplitudes

- *n*-particle Scattering: $1+2 \rightarrow 3+4+\ldots+n$
- Reduction to a Scalar-Integral Basis Passarino-Veltman

$$= \sum_{10^2 - 10^3} \int d^D \ell \frac{\ell^{\mu} \ell^{\nu} \ell^{\rho} \dots}{D_1 D_2 \dots D_n} = c_4 + c_3 + c_2 + c_1$$

• Known: Master Integrals

$$= \int d^D \ell \, \frac{1}{D_1 D_2 D_3 D_4} \quad , \qquad \end{pmatrix} \qquad = \int d^D \ell \, \frac{1}{D_1 D_2 D_3} \quad , \qquad \bigwedge \qquad = \int d^D \ell \, \frac{1}{D_1 D_2} \, , \qquad \bigcirc \qquad = \int d^D \ell \, \frac{1}{D_1} \, .$$

• Unknowns: c_i are rational functions of external kinematic invariants

Cutting Rules

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P_{12}^2 -channel

$$d^{4}\Phi \equiv d^{4}\ell_{1} d^{4}\ell_{2} \delta^{(4)} \Big(\ell_{1} + \ell_{2} - P_{12}\Big) \delta^{(+)} \Big(\ell_{1}^{2} - m_{1}^{2}\Big) \delta^{(+)} \Big(\ell_{2}^{2} - m_{2}^{2}\Big)$$

Cutting Rules

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P_{12}^2 -channel

Cutting Rules

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P_{12}^2 -channel

Unitarity & Cutting Rules

• Optical Theorem from Unitarity $S \equiv 1 + iT$: $S^{\dagger}S = 1 \Rightarrow 2\text{Im}T = -i(T - T^{\dagger}) = T^{\dagger}T$

• One-loop Amplitude:

$$A_n^{1-\text{loop}} = c_4 + c_3 + c_2 + c_1$$

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

$$2\mathrm{Im}\left\{A_{n}^{1\text{-loop}}\right\} = \int_{i}^{j} \underbrace{\operatorname{tree}}_{\ell_{1}} \left[\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \ell_{1} \end{array}\right] = c_{4} \underbrace{\downarrow}_{\ell_{1}} + c_{3} \underbrace{\downarrow}_{\ell_{2}} + c_{2} \underbrace{\downarrow}_{\ell_{1}} + c_{3} \underbrace{\downarrow}_{\ell_{1}} + c_{2} \underbrace{\downarrow}_{\ell_{1}} +$$
The Strategy: Generalised Unitarity

• One-loop Amplitude:

$$A_n^{1-\text{loop}} = c_4 + c_3 + c_2 + c_1$$

Multiple-cut as projectors

The more you cut, the more you loose, the simpler it gets

Cut-Conditions

Loop momentum decomposition

$$\ell_{\mu} = x_1 p_{\mu} + x_2 q_{\mu} + x_3 \varepsilon_{\mu}^+ + x_4 \varepsilon_{\mu}^-$$

• On-shell condition $\delta(\ell_i^2 - m_i^2)$

- under Multiple On-shellness Conditions :
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are *integration*-variable

Cut-Conditions

• Loop momentum decomposition

$$\ell_{\mu} = x_1 p_{\mu} + x_2 q_{\mu} + x_3 \varepsilon_{\mu}^{+} + x_4 \varepsilon_{\mu}^{-}$$

On-shell condition

 $\delta\left(\ell_i^2-m_i^2\right)$

- under Multiple On-shellness Conditions :
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are *integration*-variable

To *integrate* or not to *integrate*: that is the question

To integrate...

Cut-Integration by Cauchy's residue theorem (and its generalization)

• 4ple-cut Britto, Cachazo, Feng

$$c_{[K_1|K_2|K_3|K_4]} = \frac{I_4(\ell_+) + I_4(\ell_-)}{2}$$
 Ca

Cauchy's formula

$$c_{[K_1,K_2,K_3]} = \frac{\operatorname{Res}_{t=0} \left\{ I_3(\ell^+) + I_3(\ell^-) \right\}}{2}$$

Laurent series

• 2ple-cut P.M.

• 3ple-cut Forde

$$\int d^4\Phi = (1-2\rho) \iint \frac{dz \wedge d\bar{z}}{(1+z\bar{z})^2}$$

$$2\pi i \mathcal{F}(z_0) = \int_{\partial D} \frac{\mathcal{F}(z)}{z - z_0} dz - \iint_D \frac{\mathcal{F}_{\bar{z}}}{z - z_0} d\bar{z} \wedge dz.$$
 Stokes' Thm
Cauchy-Pompeiu formula

$$c_{[K]} = \left. \oint dz \, F^{\operatorname{rat}}(z, z^*) = \operatorname{Res}_{z=0} F^{\operatorname{rat}}(z, z^*) + \operatorname{Res}_{z\neq 0} F^{\operatorname{rat}}(z, z^*) \right|_{\operatorname{rat}}$$

Analytic Calculations: state-of-the-art

Optical-Thm and Berry Phase P.

P.M. (2009)

• Geometric Phases

... or not to integrate

Cut-Integration replaced by *partial fractioning* (and its generalization)

Multi-Loop Integrand-Reduction by Polynomial Division

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011)

Zhang (2012)

Mirabella, Ossola, Peraro, & P.M (2012)

Problem: what is the form of the residues? "find the right variables encoding the cut-structure"

variables

• ISP's = Irreducible Scalar Products:

-q-components which can variate under cut-conditions

- spurious: vanishing upon integration
- non-spurious: non-vanishing upon integration \Rightarrow MI's

Ossola & P.M. (2011)

A simple idea from Modular Arithmetic

Division Modulo *n*

The following statements are all equivalent:

(i)
$$a \equiv b \pmod{n}$$

(ii) $n | (a - b)$
(iii) $a - b = nt$ for some $t \in \mathbb{Z}$
(iv) $a = b + nt$ for some $t \in \mathbb{Z}$.

hold the *remainder* !

Multivariate Polynomial Division

Zhang (2012); Mirabella, Ossola, Peraro, & P.M. (2012)

Jdeal

$$\mathcal{J}_{i_1\cdots i_n} = \langle D_{i_1}, \cdots, D_{i_n} \rangle \equiv \left\{ \sum_{\kappa=1}^n h_\kappa(\mathbf{z}) D_{i_\kappa}(\mathbf{z}) : h_\kappa(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

Groebner Basis

$$\mathcal{G}_{i_1\cdots i_n} = \{g_1(\mathbf{z}), \dots, g_m(\mathbf{z})\}$$

n-ple cut-conditions

 $D_{i_1} = \ldots = D_{i_n} = 0 \quad \Leftrightarrow \quad g_1 = \ldots = g_m = 0$

Multivariate Polynomial Division

Zhang (2012); Mirabella, Ossola, Peraro, & P.M. (2012)

Jdeal

$$\mathcal{J}_{i_1\cdots i_n} = \langle D_{i_1}, \cdots, D_{i_n} \rangle \equiv \left\{ \sum_{\kappa=1}^n h_\kappa(\mathbf{z}) D_{i_\kappa}(\mathbf{z}) : h_\kappa(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

Groebner Basis

$$\mathcal{G}_{i_1\cdots i_n} = \{g_1(\mathbf{z}), \ldots, g_m(\mathbf{z})\}$$

n-ple cut-conditions

 $D_{i_1} = \ldots = D_{i_n} = 0 \quad \Leftrightarrow \quad g_1 = \ldots = g_m = 0$

Polynomial Division

$$\mathcal{N}_{i_1\cdots i_n}(\mathbf{z}) = \Gamma_{i_1\cdots i_n} + \Delta_{i_1\cdots i_n}(\mathbf{z}) ,$$

Remainder ~ Residue $\Delta_{i_1 \cdots i_n}(\mathbf{z})$

Quotients $\Gamma_{i_1\cdots i_n} = \sum_{i=1}^m \mathcal{Q}_i(\mathbf{z}) g_i(\mathbf{z}) \qquad \text{belongs to the ideal } \mathcal{J}_{i_1\cdots i_n},$ $= \sum_{i=1}^n \mathcal{N}_{i_1\cdots i_{\kappa-1}i_{\kappa+1}\cdots i_n}(\mathbf{z}) D_{i_\kappa}(\mathbf{z}) .$

Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, & P.M. (2012)

Multi-Loop Integrand Decomposition

Multi-(particle)-pole decomposition

$$\begin{aligned} \mathcal{I}_{i_{1}\cdots i_{n}} &= \frac{\mathcal{N}_{i_{1}\cdots i_{n}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{n}}} \\ \mathcal{I}_{i_{1}\cdots i_{n}} &= \sum_{1=i_{1}<< i_{\max}}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}}} + \sum_{1=i_{1}<< i_{\max}-1}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-1}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-1}} \\ &+ \sum_{1=i_{1}<< i_{\max}-2}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-2}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-2}} + \dots + \sum_{1=i_{1}< i_{2}}^{n} \frac{\Delta_{i_{1}i_{2}}}{D_{i_{1}}D_{i_{2}}} + \sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}} + Q_{\emptyset} \end{aligned}$$

Multi-Loop Integrand Decomposition

Multi-(particle)-pole decomposition

$$\begin{aligned} \mathcal{I}_{i_{1}\cdots i_{n}} &= \frac{\mathcal{N}_{i_{1}\cdots i_{n}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{n}}} \\ \mathcal{I}_{i_{1}\cdots i_{n}} &= \sum_{1=i_{1}<< i_{\max}}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}}} + \sum_{1=i_{1}<< i_{\max}-1}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-1}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-1}} \\ &+ \sum_{1=i_{1}<< i_{\max}-2}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-2}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-2}} + \dots + \sum_{1=i_{1}< i_{2}}^{n} \frac{\Delta_{i_{1}i_{2}}}{D_{i_{1}}D_{i_{2}}} + \sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}} + Q_{\emptyset} \end{aligned}$$

Tree-level decomposition by **partial fractioning**: is this an accident?

Apparently no!

Parametric form of the residues is process independent.

Use your favourite generator, (Feynman diagrams, tree-amplitudes, currents,...), and sample *I*(q's) as many time as the number of unknown coefficients Parametric form of the residues is process independent.

Actual values of the coefficients is process dependent.

THE MAXIMUM-CUT THEOREM

Mirabella, Ossola, Peraro, & P.M. (2012)

At ℓ loops, in four dimensions, we define a maximum-cut as a (4 ℓ)-ple cut

$$D_{i_1} = D_{i_2} = \dots = D_{i_{4\ell}} = 0 ,$$

which constraints completely the components of the loop momenta. In four dimensions this implies the presence of four constraints for each loop momenta.

We assume that:

in non-exceptional phase-space points, a maximum-cut has a finite number n_s of solutions, each with multiplicity one.

Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by n_s coefficients, which admits a univariate representation of degree $(n_s - 1)$.

EXAMPLES OF MAXIMUM-CUTS

diagram	Δ	n_{s}	diagram	Δ	n_{s}
\prec	c_0	1		$c_0 + c_1 z$	2
	$\sum_{i=0}^{3} c_i z^i$	4	$\overline{\langle}$	$\sum_{i=0}^{3} c_i z^i$	4
	$\sum_{i=0}^{7} c_i z^i$	8		$\succ \sum_{i=0}^{7} c_i z^i$	8

One-Loop Integrand-Reduction

One-Loop Integrand Decomposition

Choice of 4-dimensional basis for an *m*-point residue

$$e_1^2 = e_2^2 = 0$$
, $e_1 \cdot e_2 = 1$, $e_3^2 = e_4^2 = \delta_{m4}$, $e_3 \cdot e_4 = -(1 - \delta_{m4})$

• Coordinates: $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5) \equiv (x_1, x_2, x_3, x_4, \mu^2)$

$$q_{4-\text{dim}}^{\mu} = -p_{i_1}^{\mu} + x_1 \ e_1^{\mu} + x_2 \ e_2^{\mu} + x_3 \ e_3^{\mu} + x_4 \ e_4^{\mu}, \qquad q^2 = q_{4-\text{dim}}^2 - \mu^2$$

Generic numerator

$$\mathcal{N}_{i_1\cdots i_m} = \sum_{j_1,\dots,j_5} \alpha_{\vec{j}} \, z_1^{j_1} \, z_2^{j_2} \, z_3^{j_3} \, z_4^{j_4} \, z_5^{j_5}, \qquad (j_1 \dots j_5) \quad \text{such that} \quad \operatorname{rank}(\mathcal{N}_{i_1\cdots i_m}) \le m$$

Residues

$$\begin{aligned} \Delta_{i_1 i_2 i_3 i_4 i_5} &= c_0 \\ \Delta_{i_1 i_2 i_3 i_4} &= c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4) \\ \Delta_{i_1 i_2 i_3} &= c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4) \\ \Delta_{i_1 i_2} &= c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2 \\ \Delta_{i_1} &= c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \end{aligned}$$

One-Loop Integrand Decomposition

$$\mathcal{A}_{n}^{\text{one-loop}} = \int d^{-2c} \mu \int d^{4}q \ A_{n}(q,\mu^{2}), \qquad A_{n}(q,\mu^{2}) = \frac{\mathcal{N}_{n}(q,\mu^{2})}{D_{0}D_{1}\cdots D_{n-1}} \qquad \overline{D}_{i} = (\overline{q} + p_{i})^{2} - m_{i}^{2} = (q + p_{i})^{2} - m_{i}^{2} - \mu^{2}$$
We use a bar to denote objects living in $d = 4 - 2\epsilon$ dimensions
$$\oint = \oint + \mu, \quad \text{with} \qquad \overline{q}^{2} = q^{2} - \mu^{2}.$$

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} - (- + c_{2,9} - (- - - + c_{2,9} - (- - - + c_{2,9} - (- - - + c_{2,9} - (-$$

method: Reconstruct the complete polynomial residues to extract the coefficients of MI's

Ossola, Papadopoulos, Pittau

2.2.2 Quintuple cut

The residue of the quintuple-cut, $\overline{D}_i = \ldots = \overline{D}_m = 0$, defined as,

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\} = c_{5,0}^{(ijk\ell m)} \mu^2 .$$

2.2.3 Quadruple cut

The residue of the quadruple-cut, $\bar{D}_i = \ldots = \bar{D}_\ell = 0$, defined as,

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\} = c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 - \left(c_{4,1}^{(ijk\ell)} + c_{4,3}^{(ijk\ell)} \mu^2\right) \left[(K_3 \cdot e_4) x_4 - (K_3 \cdot e_3) x_3 \right] (e_1 \cdot e_2),$$

2.2.4 Triple cut

The residue of the triple-cut, $\bar{D}_i = \bar{D}_j = \bar{D}_k = 0$, defined as,

 $\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i=1}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i=1}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{\ell}} \right\}$ **SAMURAI**Ossola, Reiter, Tramontano, & P.M. (2010) **Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level Scattering and level Scattering and level Scattering Amplitudes from Unitarity-based Reduction Algorithm at the Integrand-level**

$$= c_{2,0}^{(ij)} + c_{2,9}^{(ij)} \mu^2 + \left(c_{2,1}^{(ij)} x_1 - c_{2,3}^{(ij)} x_4 - c_{2,5}^{(ij)} x_3\right) (e_1 \cdot e_2) + \left(c_{2,2}^{(ij)} x_1^2 + c_{2,4}^{(ij)} x_4^2 + c_{2,6}^{(ij)} x_3^2 - c_{2,7}^{(ij)} x_1 x_4 - c_{2,8}^{(ij)} x_1 x_3\right) (e_1 \cdot e_2)^2$$

2.2.6 Single cut

The residue of the single-cut, $\bar{D}_i = 0$, defined as,

$$\Delta_{i}(\bar{q}) = \operatorname{Res}_{i} \left\{ \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}} - \sum_{i \ll m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}\bar{D}_{m}} - \sum_{i \ll \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} - \sum_{i \ll \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\bar{D}_{\ell}} - \sum_{i \ll \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}} - \sum_{i \ll \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{k}} - \sum_{i \rightthreetimes \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{k}} - \sum_{i \rightthreetimes \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{k}} - \sum_{i \rightthreetimes \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}} - \sum_{i \rightthreetimes \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}} - \sum_{i \rightthreetimes \ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar{D}_{i}\bar$$

Improved Integrand Red'n

Integrand Reduction

$$\Delta_{i_1\dots i_m}(q,\mu^2) = \operatorname{Res}_{i_1\dots i_m} \left\{ \frac{\mathcal{N}(q,\mu^2)}{\bar{D}_{i_1}\bar{D}_{i_2}\dots\bar{D}_{i_n}} - \sum_{k=(m+1)}^{5} \sum_{i_1 < i_2 < \dots < i_k} \frac{\Delta_{i_1i_2\dots i_k}(q,\mu^2)}{\bar{D}_{i_1}\bar{D}_{i_2}\dots\bar{D}_{i_k}} \right\}$$

polynomial
a + b x + c x^2 + ...

Ossola Papadopoulos Pittau

$$= c_4$$

$$= c_4 + c_3 + c_3$$

$$= c_4 + c_3 + c_2 + c_$$

$$= c_4 + c_3 + c_2 + c_1 + c_1$$

Improved Integrand Red'n

Integrand Reduction with Laurent series expansion

$$\Delta_{i_{1}...i_{m}}(q,\mu^{2}) = \operatorname{Res}_{i_{1}...i_{m}} \left\{ \begin{array}{c} \mathcal{N}(q,\mu^{2}) \\ \overline{D}_{i_{t}}\overline{D}_{i_{2}}\dots\overline{D}_{i_{n}}} \\ polynomial \\ a + b x + c x^{2} + ... \end{array} \right. \xrightarrow{\infty}_{k=(m+1)} \sum_{i_{1} < i_{2} < ... < i_{k}} \begin{array}{c} \operatorname{universal} \\ \Delta_{i_{1}i_{2}...i_{k}}(q,\mu^{2}) \\ \overline{D}_{i_{t}}\overline{D}_{i_{2}}\dots\overline{D}_{i_{k}}} \end{array} \right\} \\ polynomial \\ a'+b' x + c' x^{2} + ... \\ A'' + b'' x + c'' x^{2} + ... \\ Mirabella Peraro PM. \end{array}$$

 $= c_4$

$$= c_4 + c_3 + c_2 + c_$$

Ninja C++ library_{Peraro}

Samurai... Ossola Reiter Tramontano P.M.

* Integrand Reduction for One-Loop Integrals Ossola Papadopoulos Pittau

K Generalised D-dim Unitarity

- :: Complete reduction to D-reg Master Integrals
- :: cut-constructible & rational terms at once

Anastasiou, Britto, Feng, Kunszt, **P.M**. Ellis Giele Kunszt Melnikov

... meets Golem Binoth Guillet Heinrich Pilon Reiter

* Integrand Generation

* Tensor Reduction

Automatic one-loop calculations

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano **P.M.**

$$\sigma_{\text{NLO}} = \int_{n} \left(d\sigma_{\text{Born}} + d\sigma_{\text{Virtual}} + \int_{1} d\sigma_{\text{Subtraction}} \right) + \int_{n+1} \left(d\sigma_{\text{Real}} - d\sigma_{\text{Subtraction}} \right)$$

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano **P.M.**

$$\sigma_{\rm NLO} = \int_{n} \left(d\sigma_{\rm Born} + d\sigma_{\rm Virtual} + \int_{1} d\sigma_{\rm Subtraction} \right) + \int_{n+1} \left(d\sigma_{\rm Real} - d\sigma_{\rm Subtraction} \right)$$

Multi Process One-Loop Provider

The GoSam Project $+ c_{1,0}$

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano *P.M.*

MC Interfaces Beyond SM EW Physics Top Physics Diphoton and jets **Higgs & Jets**

Higgs & Jazz ?

The path to Hjjj @ NLO

Challenges

higher rank :: r < n+2

the rank *r* of the numerator can be larger than the number *n* of denominators

Extending the Polynomial Residues
 Mirabella Peraro P.M.

Samurai > XSamurai van Deurzen

20000 6000 0000 0000 0000 0000 0000 000	199.9999 99.000000 99.000000
H+0j	1 NLO
$gg \to H$	1 NLO
H+1j	62 NLO
$qq \rightarrow Hqq$	14 NLO
$qg \rightarrow Hqg$	48 NLO
H+2j	926 NLO
$qq' \rightarrow Hqq'$	32 NLO
$qq \rightarrow Hqq$	64 NLO
$qg \rightarrow Hqg$	179 NLO
$gg \rightarrow Hgg$	651 NLO
H+3j	13179 NLO
$qq' \rightarrow Hqq'g$	467 NLO
$qq \rightarrow Hqqg$	868 NLO
$qg \rightarrow Hqgg$	2519 NLO
gg ightarrow Hggg	9325 NLO

Over 10,000 diagrams

00000

- Higher-Rank terms
- ► 60 Rank-7 hexagons

pp-->Hjj@NLO

v. Deurzen Greiner Luisoni Mirabella Ossola Peraro v. Soden-Fraunhofen Tramontano **P.M.** *Phys.Lett. B721 (2013) 74-81, 1301.0493 [hep-ph]*

• our amplitudes confirmed by MCFM (v6.4)

Campbell, Ellis, Williams

pp-->HtTj @ NLO

van Deurzen Luisoni Mirabella Ossola Peraro **P.M.** 1307.8437 to appear in PRL

GoSam + Ninja: more app's

van Deurzen Luisoni Mirabella Ossola Peraro P.M. (2013)

SUBPROCESS	TIME/PS-point $[ms]$				
$\mathbf{pp} ightarrow \mathbf{Wjjj}$					
$d\bar{u} \to \bar{\nu}_e e^- ggg$	226				
${ m pp} ightarrow { m Zjjj}$					
$d\bar{d} \to e^+ e^- ggg$	1911.4				
$\mathbf{pp} ightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{b} \overline{\mathbf{b}} (\mathbf{m_b} eq 0)$					
$d\bar{d} ightarrow t\bar{t}b\bar{b}$	178				
$gg \to t\bar{t}b\bar{b}$	5685				
$\mathbf{pp} \rightarrow \mathbf{Wb}\mathbf{\bar{b}j} (\mathbf{m_b} \neq 0)$					
$u\bar{d} \to e^+ \nu_e b\bar{b}g$	67				
$\mathbf{pp} \rightarrow \mathbf{Hjjj} (\mathbf{GF}, \mathbf{m_t} \rightarrow \infty)$					
$gg \to Hggg$	11266				
$gg \to Hgu\bar{u}$	999				
$u\bar{u} \to Hgu\bar{u}$	157				
$u\bar{u} \to Hgd\bar{d}$	68				
$\mathbf{pp} \rightarrow \mathbf{Hjjj} (\mathbf{VBF})$					
$u\bar{u} \to Hgu\bar{u}$	101				
$\mathbf{pp} \rightarrow \mathbf{Hjjjj} (\mathbf{VBF})$					
$u\bar{u} \rightarrow Hggu\bar{u}$	669				
$u\bar{u} \to H u\bar{u} u\bar{u}$	600				

faster, higher accuracy, more stable, no-problem with multiple masses

Intel i7 960 (3.20GHz) CPU + Intel fortran compiler ifort (with optimization O2).

Two-Loop Integrand-Reduction

2-loop 5-point amplitudes in N=4 SYM & N=8 Sugra

Mirabella, Ossola, Peraro, & P.M. (2012)

2-loop 5-point amplitudes in N=4 SYM & N=8 Sugra

Mirabella, Ossola, Peraro, & P.M. (2012)

Integrand Red'n & Color-Kinematic Duality

kinematic term of scattering amplitudes fulfills the same algebra as the **color** term

Integrand Red'n & Color-Kinematic Duality

Schubert & **P.M**. (2013)

confirming the result of Carrasco & Johansson

Integrand Red'n & Dim-reg Amplitudes

Mirabella, Ossola, Peraro, & P.M. (2013)

Basis :: Magnus Expansion for Feynman Integrals

$(\exp X)(\exp Y) = \exp(X + Y + (1/2)[X, Y] + (1/12)[X, [X, Y]] - (1/12)[Y, [X, Y]] + \ldots).$

Differential Equations for Master Integrals

Kotikov; Remiddi; Caffo, Czyc, Remiddi: Gehrmann, Remiddi; Bonciani, Remiddi, **P.M**.; Argeri, Bonciani, Ferroglia, Remiddi, **P.M**. Henn; Henn, Smirnov & Smirnov

$$p^{2}\frac{\partial}{\partial p^{2}}\left\{p-p\right\} = \frac{1}{2}p_{\mu}\frac{\partial}{\partial p_{\mu}}\left\{p-p\right\}$$

$$P^{2}\frac{\partial}{\partial P^{2}}\left\{ \underbrace{p_{1}}_{p_{2}} - p_{3} \right\} = \left[A\left(p_{1,\mu}\frac{\partial}{\partial p_{1,\mu}} + p_{2,\mu}\frac{\partial}{\partial p_{2,\mu}} \right) + B\left(p_{1,\mu}\frac{\partial}{\partial p_{2,\mu}} + p_{2,\mu}\frac{\partial}{\partial p_{1,\mu}} \right) \right] \left\{ \underbrace{p_{1}}_{p_{2}} - p_{3} \right\}$$

$$P^{2}\frac{\partial}{\partial P^{2}}\left\{ \underbrace{p_{1}}_{p_{2}} \underbrace{p_{3}}_{p_{4}} \right\} = \left[C\left(p_{1,\mu}\frac{\partial}{\partial p_{1,\mu}} - p_{3,\mu}\frac{\partial}{\partial p_{3,\mu}} \right) + Dp_{2,\mu}\frac{\partial}{\partial p_{2,\mu}} + E(p_{1,\mu} + p_{3,\mu})\left(\frac{\partial}{\partial p_{3,\mu}} - \frac{\partial}{\partial p_{1,\mu}} + \frac{\partial}{\partial p_{2,\mu}} \right) \right] \left\{ \underbrace{p_{1}}_{p_{2}} \underbrace{p_{3}}_{p_{4}} \right\}$$

 $P = p_1 + p_2,$

Magnus Expansion

Argeri, Di Vita, Mirabella, Schlenk, Schubert, Tancredi, **P.M**. (2014)

System of 1st ODE

 $\partial_x Y(x) = A(x)Y(x)$, $Y(x_0) = Y_0$. A(x) non-commutative

Solution: Matrix Exponential & Iterated Integrals

 $Y(x) = e^{\Omega(x,x_0)} Y(x_0) \equiv e^{\Omega(x)} Y_0,$

a

$$\Omega(x) = \sum_{n=1}^{\infty} \Omega_n(x) \; .$$

$$\Omega_{1}(x) = \int_{x_{0}}^{x} d\tau_{1} A(\tau_{1}) ,$$

$$BHC-formu$$

$$\Omega_{2}(x) = \frac{1}{2} \int_{x_{0}}^{x} d\tau_{1} \int_{x_{0}}^{\tau_{1}} d\tau_{2} \left[A(\tau_{1}), A(\tau_{2}) \right] ,$$

$$\Omega_{3}(x) = \frac{1}{6} \int_{x_{0}}^{t} d\tau_{1} \int_{x_{0}}^{\tau_{1}} d\tau_{2} \int_{x_{0}}^{\tau_{2}} d\tau_{3} \left[A(\tau_{1}), \left[A(\tau_{2}), A(\tau_{3}) \right] \right] + \left[A(\tau_{3}), \left[A(\tau_{2}), A(\tau_{1}) \right] \right] .$$

Figure 1 Iterated integrals and rooted trees

$$\Omega(t) = \mathbf{1} - \frac{1}{2}\mathbf{1} + \frac{1}{4}\mathbf{1} + \frac{1}{12}\mathbf{1} + \cdots$$

.

Magnus & Dyson Series

Magnus

$$Y(x) = e^{\Omega(x,x_0)} Y(x_0) \equiv e^{\Omega(x)} Y_0,$$

Dyson

$$Y(x) = Y_0 + \sum_{n=1}^{\infty} Y_n(x) , \qquad Y_n(x) \equiv \int_{x_0}^x d\tau_1 \dots \int_{x_0}^{\tau_{n-1}} d\tau_n \ A(\tau_1) A(\tau_2) \dots A(\tau_n)$$

$$\sum_{j=1}^{\infty} \Omega_j(x) = \log\left(Y_0 + \sum_{n=1}^{\infty} Y_n(x)\right)$$

$$Y_{1} = \Omega_{1} ,$$

$$Y_{2} = \Omega_{2} + \frac{1}{2!}\Omega_{1}^{2} ,$$

$$Y_{3} = \Omega_{3} + \frac{1}{2!}(\Omega_{1}\Omega_{2} + \Omega_{2}\Omega_{1}) + \frac{1}{3!}\Omega_{1}^{3}$$

$$\vdots \qquad \vdots$$

$$Y_{n} = \Omega_{n} + \sum_{j=2}^{n} \frac{1}{j}Q_{n}^{(j)} .$$

Argeri, Di Vita, Mirabella, Schlenk, Schubert, Tancredi, **P.M**. (2014)

Linear-eps Matrix

$$\partial_x f(\epsilon, x) = A(\epsilon, x) f(\epsilon, x) , \qquad A(\epsilon, x) = A_0(x) + \epsilon A_1(x) ,$$

change of basis :: Magnus #1

 $f(\epsilon, x) = B_0(x) \ g(\epsilon, x) , \qquad B_0(x) \equiv e^{\Omega[A_0](x, x_0)} , \qquad \partial_x B_0(x) = A_0(x) B_0(x) ,$

• Canonical form Henn (2013)

$$\partial_x g(\epsilon, x) = \epsilon \hat{A}_1(x) g(\epsilon, x) \qquad \qquad \hat{A}_1(x) = B_0^{-1}(x) A_1(x) B_0(x)$$

Solution :: Magnus #2 (or Dyson)

$$g(\epsilon, x) = B_1(\epsilon, x)g_0(\epsilon) , \qquad B_1(\epsilon, x) = e^{\Omega[\epsilon A_1](x, x_0)}$$

Uniform Transcendentality!

Feynman integrals can be determined from differential equations that looks like gauge transformations

intial set of MI's

$f_1 = \epsilon^2 \mathcal{T}_1 \; ,$	$f_2 = \epsilon^2 \mathcal{T}_2 \; ,$	$f_3 = \epsilon^2 \mathcal{T}_3 \; ,$	$f_4 = \epsilon^2 \mathcal{T}_4 \; ,$	$f_5 = \epsilon^2 \mathcal{T}_5 \; ,$
$f_6 = \epsilon^2 \mathcal{T}_6 \; ,$	$f_7 = \epsilon^2 \mathcal{T}_7 \; ,$	$f_8 = \epsilon^3 \mathcal{T}_8 \; ,$	$f_9 = \epsilon^3 \mathcal{T}_9 \; ,$	$f_{10} = \epsilon^2 \mathcal{T}_{10} \; ,$
$f_{11} = \epsilon^3 \mathcal{T}_{11} \; ,$	$f_{12} = \epsilon^3 \mathcal{T}_{12} \; ,$	$f_{13} = \epsilon^2 \mathcal{T}_{13} \; , \qquad$	$f_{14} = \epsilon^3 \mathcal{T}_{14} \; ,$	$f_{15} = \epsilon^4 \mathcal{T}_{15} \; ,$
$f_{16} = \epsilon^4 \mathcal{T}_{16} \; ,$	$f_{17} = \epsilon^4 \mathcal{T}_{17} \; , \qquad$			

• after *rotation*

 \mathcal{N}

$$\partial_x g(\epsilon, x) = \epsilon \hat{A}_1(x) g(\epsilon, x) , \qquad \hat{A}_1(x) = \frac{M_1}{x} + \frac{M_2}{1+x} + \frac{M_3}{1-x} ,$$

		$\langle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \rangle$	1		
			100000	0 0 0 0 0 0	0 0 0 0 0 0 0
	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000	0 0 0 0 0 0	0 0 0 0 0 0
	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	$0 \ 0 \ -4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	00000	0 0 0 0 0 0	0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000	0 0 0 0 0 0	0 0 0 0 0 0
	-1 0 0 0 5 -6 0 0 0 0 0 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ -6 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	00002	-2 0 0 0 0 0	0 0 0 0 0 0
	0 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0 0		00000	-2 0 0 0 0 0	0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000	0 0 0 0 0 0	0 0 0 0 0 0
	-1 0 0 -4 0 -2 0 -2 0 0 0 0 0 0 0 0 0		00000	0 0 -2 0 0	0 0 0 0 0 0
1 = 1	0 0 0 - 2 0 0 0 0 2 0 0 0 0 0 0 0 0	$M_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$I_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0 0	0 0 0 0 0 0
	$-\frac{1}{2}$ 0 0 0 1 -2 -3 0 0 3 3 0 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ -1 \ \frac{1}{2} \ 0 \ 0 \ 0 \ -4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	00000	$0 -6 \ 0 \ 0 \ 2 \ 0$	0 0 0 0 0 0
	0 0 0 0 1 -1 2 0 0 -2 -2 0 0 0 0 0 0		00000	0 0 0 0 0 -2	2 0 0 0 0 0 0
	0 0 0 0 0 0 1 0 0 0 -1 -1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	0 0 0 0 0 0	0 0 0 0 0 0
	0 -1 0 0 0 -3 0 0 0 3 3 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -6 \ 0 \ 0 \ 0 \ 0 \ 0 \ -2 \ 0 \ 0 \ 0 \ 0$	00000	$0 -12 \ 0 \ 0 \ 0 \ 0$	0 4 0 0 0 0
	$0 -1 0 0 1 -\frac{1}{2} 0 2 2 0 0 0 0 2 2 0 0$	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	00000	0 0 0 0 0 0	0 0 0 0 0 0
	$0 \ 0 \ 0 \ 0 \ 0 \ \frac{1}{2} \ 0 \ -\frac{1}{2} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ -1 \ -1 \ 0 \ 0$		00000	0 0 -1 0 0	0 0 0 0 0 0
	$-\frac{1}{2}$ 0 0 -2 -1 0 -2 1 0 2 0 -2 0 0 -2 -2 2		00000	0 0 2 0 0 0	-4 0 0 -4 -2 0
	$\begin{bmatrix} 0 & 0 & 0 & -1 & \frac{1}{2} & 0 & 3 & -2 & 0 & -6 & -2 & 0 & 0 & -4 & -4 & 4 \end{bmatrix}$		00000	0 0 0 0 0 0	0 0 0 0 0 4

 $M_{-2} = \frac{1}{2}$, Bonciani, Remiddi, P.M. (2013)

$$M_{-1} = \frac{2}{5},$$

$$M_{-1} = \frac{5}{2} - \left[1 - \frac{2}{(1-x)}\right] H(0,x),$$

$$M_{0} = \frac{19}{2} + \zeta(2) + \left[1 - \frac{2}{(1-x)}\right] [\zeta(2) - 5H(0,x) + 2H(-1,0,x)] + \frac{2}{(1-x)} H(0,0,x) + \left[\frac{1}{(1-x)} - \frac{1}{(1+x)}\right] [\zeta(2)H(0,x) + H(0,0,0,x)].$$

$$(p_2 \cdot k_1)$$

$$\begin{split} \frac{N_{-2}}{a} &= \frac{1}{8} + \frac{1}{16} \left[x + \frac{1}{x} \right], \\ \frac{N_{-1}}{a} &= \frac{9}{32} \left[2 + x + \frac{1}{x} \right] - \frac{1}{8} \left[4 + x - \frac{1}{x} \right] H(0, x) + \frac{1}{(1 - x)} H(0, x), \\ \frac{N_0}{a} &= \frac{63}{32} + \frac{\zeta(2)}{2} + \frac{63}{64} \left[\left(1 + \frac{16}{63} \zeta(2) \right) x + \frac{1}{x} \right] - \frac{\zeta(2)}{(1 - x)} - \frac{1}{16} \left[32 + 9x \right] \\ &- \frac{9}{x} H(0, x) + \frac{(16 + \zeta(2))}{4(1 - x)} H(0, x) - \frac{\zeta(2)}{4(1 + x)} H(0, x) - \frac{1}{4} \left[2 - \frac{1}{x} \right] \\ &- \frac{4}{(1 - x)} H(0, 0, x) + \frac{1}{4} \left[4 + x - \frac{1}{x} - \frac{8}{(1 - x)} \right] H(-1, 0, x) \\ &+ \frac{1}{4} \left[\frac{1}{(1 - x)} - \frac{1}{(1 + x)} \right] H(0, 0, 0, x) \,. \end{split}$$

$$\begin{aligned} & p_1 \\ & f_{12}^{(0)} = 0, \\ & g_{12}^{(0)} = 0, \\ & g_{12}^{(1)} = 0, \\ & g_{12}^{(2)} = 0, \\ & g_{12}^{(2)} = 0, \\ & g_{12}^{(3)} = -\operatorname{H}(0, 0, 0; x) - \zeta_2 \operatorname{H}(0; x), \\ & g_{12}^{(4)} = -2\operatorname{H}(-1, 0, 0, 0; x) + 2\operatorname{H}(0, -1, 0, 0; x) + 2\operatorname{H}(0, 0, -1, 0; x) \\ & - 3\operatorname{H}(0, 0, 0, 0; x) - 4\operatorname{H}(0, 1, 0, 0; x) + \zeta_2(-2\operatorname{H}(-1, 0; x) \\ & + 6\operatorname{H}(0, -1; x) - \operatorname{H}(0, 0; x)) + 2\zeta_3\operatorname{H}(0; x) + \frac{\zeta_4}{4}, \end{aligned}$$

$$\begin{aligned} & p_1 \\ g_{13}^{(0)} = 0, \\ g_{13}^{(1)} = 0, \\ g_{13}^{(2)} = H(0,0;x) + \frac{3\zeta_2}{2}, \\ g_{13}^{(3)} = -2 H(-1,0,0;x) - 2 H(0,-1,0;x) + 4 H(0,0,0;x) + 4 H(1,0,0;x) \\ & + \zeta_2(-6 H(-1;x) + 2 H(0;x) - 3 \log 2) - \frac{\zeta_3}{4}, \\ g_{13}^{(4)} = 4 H(-1,-1,0,0;x) + 4 H(-1,0,-1,0;x) - 8 H(-1,0,0,0;x) \\ & - 8 H(-1,1,0,0;x) + 4 H(0,-1,-1,0;x) - 8 H(0,-1,0,0;x) \\ & - 8 H(0,0,-1,0;x) + 10 H(0,0,0,0;x) + 12 H(0,1,0,0;x) \\ & - 8 H(1,-1,0,0;x) - 8 H(1,0,-1,0;x) + 16 H(1,0,0,0;x) \\ & + 16 H(1,1,0,0;x) + 12 Li_4 \frac{1}{2} + \frac{\log^4 2}{2} + 2 \zeta_2 (12 \log 2 H(-1;x)) \\ & + 12 \log 2 H(1;x) + 6 H(-1,-1;x) - 2 H(-1,0;x) - 8 H(0,-1;x) \\ & + H(0,0;x) - 12 H(1,-1;x) + 4 H(1,0;x) + 3 \log^2 2) \\ & - 2 \zeta_3 (5 H(-1;x) + 4 H(0;x) + 11 H(1;x)) - \frac{47 \zeta_4}{4}, \end{aligned}$$

• intial set of MI's

$$\begin{split} f_{1} &= \epsilon^{2} \, s \, \mathcal{T}_{a}(s) \,, \qquad f_{2} = \epsilon^{2} \, t \, \mathcal{T}_{a}(t) \,, \qquad f_{3} = \epsilon^{2} \, u \, \mathcal{T}_{a}(u) \,, \\ f_{4} &= \epsilon^{3} \, s \, \mathcal{T}_{b}(s) \,, \qquad f_{5} = \epsilon^{3} \, s \, t \, \mathcal{T}_{c}(s,t) \,, \quad f_{6} = \epsilon^{3} \, s \, u \, \mathcal{T}_{c}(s,u) \,, \\ f_{7} &= \epsilon^{4} \, u \, \mathcal{T}_{d}(s,t) \,, \qquad f_{8} = \epsilon^{4} \, s \, \mathcal{T}_{d}(t,u) \,, \qquad f_{9} = \epsilon^{4} \, t \, \mathcal{T}_{d}(u,s) \,, \\ f_{10} &= \epsilon^{4} \, s^{2} \, \mathcal{T}_{e}(s) \,, \end{split}$$

$$\begin{aligned} f_{11} &= \epsilon^{4} \, s \, t \, u \, \mathcal{T}_{f}(s,t) - \frac{3}{4 \, s \, (4\epsilon+1)} \left[\epsilon^{2} \left(s^{2} \, \mathcal{T}_{a}(s) + t^{2} \, \mathcal{T}_{a}(t) + u^{2} \, \mathcal{T}_{a}(u) \, \right) \\ &- 4 \epsilon^{4} \left(u^{2} \, \mathcal{T}_{d}(s,t) + s^{2} \, \mathcal{T}_{d}(t,u) + t^{2} \, \mathcal{T}_{d}(u,s) \right) \right] \,, \end{aligned}$$

$$\begin{aligned} f_{12} &= \epsilon^{4} \, s \, t \, \mathcal{T}_{g}(s,t) - \frac{3}{8 \, u \, (4\epsilon+1)} \left[\epsilon^{2} \left(s^{2} \, \mathcal{T}_{a}(s) + t^{2} \, \mathcal{T}_{a}(t) + u^{2} \, \mathcal{T}_{a}(u) \, \right) \\ &- 4 \epsilon^{4} \left(u^{2} \, \mathcal{T}_{d}(s,t) + s^{2} \, \mathcal{T}_{d}(t,u) + t^{2} \, \mathcal{T}_{d}(u,s) \right) \right] \,, \end{aligned}$$

• after *rotation*

 $\partial_x g(\epsilon, x) = \epsilon \hat{A}_1(x) g(\epsilon, x) , \qquad \hat{A}(x) = \frac{M_1}{x} + \frac{M_2}{1-x} ,$

	(0	0	0	0	0	0	0	0	0	0 0	0	
	0	-2	0	0	0	0	0	0	0	0 0	0	
	0	0	0	0	0	0	0	0	0	0 0	0	
	0	0	0	0	0	0	0	0	0	0 0	0	
	0	$-\frac{3}{2}$	0	0	-2	0	0	0	0	0 0	0	
$M_1 =$	0	0	$\frac{3}{2}$	-3	0	1	0	0	0	$0 \ 0$	0	
	$-\frac{1}{2}$	$\frac{1}{2}$	Ō	0	0	0	-2	0	0	0 0	0	
	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0	-2	0	$0 \ 0$	0	
	0	Ō	0	0	0	0	0	0	2	0 0	0	
	0	0	0	0	0	0	0	0	0	0 0	0	
	-6	-6	$-\frac{9}{2}$	0	-4	-2	-18	-12	-12	1 1	-2	
	$\frac{3}{4}$	$\frac{9}{4}$	$-\frac{21}{4}$	3	2	-3	12	-6	-18	0 0	-2)	/

Conclusions

A new result in QFT

- A unique mathematical framework for Amplitudes at any order in Perturbation Theory
 - one ingredient: Feynman denominator
 - Some operation: partial fractioning
- Solution And Anticate Polynomial Division/Groebner-basis generates the *residue* at an arbitrary cut

A new computational method

- Recursive generation of the Integrand-decomposition Formula @ any loop
- Amplitude decomposition from the shape of *residues*

Conclusions

A new result in QFT

- A unique mathematical framework for Amplitudes at any order in Perturbation Theory
 - Sone ingredient: Feynman denominator
 - Some operation: partial fractioning
- Solutivariate Polynomial Division/Groebner-basis generates the *residue* at an arbitrary cut

A new computational method

- Recursive generation of the Integrand-decomposition Formula @ any loop
- Amplitude decomposition from the shape of *residues*

Residues' *classification* complementary to Landau's singularity classification

ON ANALYTIC PROPERTIES OF VERTEX PARTS IN QUANTUM FIELD THEORY

L. D. LANDAU Institute for Physical Problems, Moscow

Received 27 April 1959

Abstract: A general method of finding the singularities of quantum field theory values on the basis of graph techniques is evolved.

Conclusions

A new result in QFT

- A unique mathematical framework for Amplitudes at any order in Perturbation Theory
 - one ingredient: Feynman denominator
 - Some operation: partial fractioning
- Solutivariate Polynomial Division/Groebner-basis generates the *residue* at an arbitrary cut

A new computational method

- Recursive generation of the Integrand-decomposition Formula @ any loop
- Amplitude decomposition from the shape of *residues*
- Residues' *classification* complementary to Landau's singularity classification

Pheno applications

- GoSam, Samurai, Ninja: multi-process automatic NLO calculations main achievements:
 - Higgs production in association with jets and heavy-quarks at NLO

OutLoo(k/p)

Sone-Loop

- GoSam2.0 @ LHC
 - New integrand generator (5D-unitarity)
 - EW and massive particles
- a new horizon: Automating the integrand reduction analytically

Beyond One-Loop

Combining Integrand Reduction & Integration-by-parts

- Master Integrals from Magnus exponential
- ♀pp-->H+2 at NNLO

Sa driving question:

QFT finiteness: KLN-theorem @ the integrand level

xing-path with many subjects actractive for a wide spectrum of people

Arkani-Hamed, Bourjaily, Cachazo, Trnka

Precision Calculations to fill the gap!

Electric lamps were not invented by improving candles T. Hänsch