Scattering Amplifudes
 new perspectives
 on Feynman Integral Calculus

Pierpaolo Mastrolia

Max Planck Institute for Physics, Munich
Physics and Astronomy Dept., University of Padova

Motivation

\$Identify a unique Mathematical framework for any Multi-Loop Amplitude
©Simplify the calculations in High-Energy Physics
©Computing the uncomputable
Discover hidden properties of Quantum Field Theories

Path

©Scattering Amplitudes in QFT
\&Unitarity and Analyticity
©Poles and Residues
Amplitudes Decomposition
OUnitarity-based methods and Cauchy's Residue Theorem
Multiloop Integrand Reduction and principles of Algebraic Geometry
YApplication: H+3jets and HtTj production at NLO
©Application: beyond one-loop
©Differential Equations for Feynman Integrals: Magnus Exponential
YConclusions

Origins

1. What is the major discovery of the mankind?
2. What is the major invention of the mankind?
3. How do human beings acquire knowledge?

Origins

1. What is the major discovery of the mankind? The Fire
2. What is the major invention of the mankind? The Wheel
3. How do human beings acquire knowledge? By successive approximation

Origins

1. What is the major discovery of the mankind? The Fire
2. What is the major invention of the mankind? The Wheel
3. How do human beings acquire knowledge? By successive approximation

What Particle Physics has to do with that?

Origins

- Focusing energy in one point
- Energy from collisions
- usefulness of circular shapes
- Exponential function

Origins

Particle Physics...

$$
\begin{aligned}
e^{i x} & =\left(1+\frac{-x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{-x^{6}}{6!}+\frac{x^{8}}{8!}+\cdots\right)+i\left(x+\frac{-x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{-x^{7}}{7!}+\frac{x^{9}}{9!} \cdots\right) \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}+i \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \\
& =\cos (x)+i \sin (x)
\end{aligned}
$$

...in theory

Perturbation Theory

- Goal :: Discovery = Caos - Known
- Tool :: Factorization Hypothesis $=>$ Observables $=$ Non-Perturbative \times Perturbative
- Perturbative Approach
- organize the knowledge in successive approximations
- delaying our ignorance to higher-orders

Anatomy of the Scattering Process

PDFs

Hard scattering

Parton shower Hadronization and decay

Scattering Matrix

$$
S_{f i}=\lim _{\substack{t_{1} \rightarrow+\infty \\ t_{2} \rightarrow-\infty}}\left\langle\phi_{f}\right| U\left(t_{1}, t_{2}\right)\left|\phi_{i}\right\rangle=\delta_{f i}+i(2 \pi)^{4} \delta^{(4)}\left(p_{f}-p_{i}\right) M_{f i}
$$

The transition rate for a transition from the initial state i to the final state f per unit time is $\quad w_{f i}=\frac{\left|S_{f i}\right|^{2}}{T}$
total scattering cross section $\sigma(a+b \rightarrow 1+2+\ldots+n)$
$\sigma=\frac{\# \text { transitions per unit of time }}{\# \text { incoming particles per surface per time }}=\frac{w_{f i}}{\text { flux }} \quad$ flux $\left.=\frac{\# \text { particles }}{\text { volume }} \cdot \right\rvert\,$ relative velocity \mid

The cross section is given by

$$
\sigma=\frac{1}{2 s} \int \mathrm{~d} \phi_{n}\left(p_{1}, \ldots, p_{n} ; Q\right) \frac{1}{S} \sum_{\text {spin }}\left|M_{n}\right|^{2}
$$

where Q is the total incoming momentum, $\left(s=Q^{2}\right)$ and

$$
\mathrm{d} \phi_{n}=(2 \pi)^{4} \delta^{d}\left(Q^{\mu}-\sum_{j=1}^{n} p_{j}^{\mu}\right) \prod_{j=1}^{n} \frac{\mathrm{~d}^{d} p_{j}}{(2 \pi)^{d-1}} \delta_{+}\left(p_{j}^{2}-m_{j}^{2}\right)
$$

Scattering Amplitude

- Feynman Diagrams

$$
\mathrm{i} \mathcal{M}=\sum_{\text {Grophs }}
$$

- Squared Amplitude

$$
\sum\left|\mathcal{M}_{n}\right|^{2}=\sum_{\text {cuts }, \mathcal{G}}
$$

Perturbation Theory \& Feynman Diagrams

\square tree-graphs with $(\mathrm{n}+1)$-partons \& soft/ collinear divergences

】virtual-graphs with n-partons

$$
\rangle \ll \quad I^{\mu \nu \rho \ldots}=\int d^{D} \ell \frac{\ell^{\mu} \ell^{\nu} \ell^{\rho} \ldots}{D_{1} D_{2} \ldots}
$$

\square extracting IR-singularities from both and combining them
${ }_{\Phi}$ phase-space slicing, subtractions, dipoles, antennas

Scattering Amplitudes

Front-line in Theoretical Particle Physics
@ LHC Phenomenology

p-p collision@ 14 TeV c.m.e.

Signals:

- Decays: $H \rightarrow V V \quad(V=\gamma, W, Z)$
- $P P \rightarrow H+0,1,2$ jets (Gluon Fusion)
- $P P \rightarrow H+2$ jets (Weak Boson Fusion)
- $P P \rightarrow H+t \bar{t}$
- $P P \rightarrow H+W, Z$

Backgrounds:

- $P P \rightarrow t \bar{t}+0,1,2$ jets
- $P P \rightarrow V V+0,1,2$ jets
- $P P \rightarrow V+0,1,2,3$ jets
- $P P \rightarrow V V V+0,1,2,3$ jets

Scattering Amplitudes

\&Front-line in Theoretical Particle Physics

@ LHC Phenomenology
@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)
- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

Scattering Amplitudes

\&Front-line in Theoretical Particle Physics
@ LHC Phenomenology
@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)
- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory
- Exploring the Finiteness of Supergravity

High Energy Physics Goals: Loops vs Legs

Complexity: Loops vs Legs

Complexity: Loops vs Legs

Feynman Diagrams Complexity

- four photon amplitude

All-plus photon helicity-amplitude $=-8+\mathrm{O}(\varepsilon)$

Feynman Diagrams Complexity

- $\mathrm{n}+2$ gluon tree-amplitude $g g$--> gg...g

n	2	3	4	5	6	7	8
\# of diagrams	4	25	220	2485	34300	559405	10525900

\& 5-gluon case ($\mathrm{n}=3$)

All-plus helicity $=0$
Single-minus helicity $=0$

$$
\text { Two-minus }=>\mathcal{A}_{n}\left(1^{-}, 2^{+}, \ldots, m^{-}, \ldots, n^{+}\right)=i g^{n-2} \frac{\langle 1 m\rangle^{4}}{\langle 12\rangle \cdots\langle(n-1) n\rangle\langle n 1\rangle}
$$

Looking for Simplicity behind Complexity?

Process-Independent Strategy

料 Properties of the S-Matrix

- a general mathematical property: Analyticity of Scattering-Amplitudes
\triangleright Scattering Amplitudes are determined by their poles and branch-cuts
- a general physical property: Unitarity of Scattering-Amplitudes
\triangleright The residues at poles and branch-points are products of simpler amplitudes, with lower number of particles and/or less loops

帚Multi-pole expansion of Scattering Amplitudes

Amplitudes Decomposition:

the algebraic way

$$
\mathbf{a}=a x \mathbf{i}+a y \mathbf{j}+a z k
$$

${ }_{\$}$ Basis: $\{\mathrm{ij} \mathrm{jk}$
\&scalar product/Projection: to extract the components

$$
\begin{aligned}
& a_{x}=\mathbf{a} . \mathbf{i} \\
& a_{y}=\mathbf{a} \cdot \mathbf{j} \\
& a_{z}=\mathbf{a} \cdot k
\end{aligned}
$$

Projections :: On-Shell Cut-Conditions

Completeness Relations: cutting " 1 "

- the richness of factorization

$$
i(-i)=1
$$

$$
\sum_{n}\left|\psi_{\mathrm{n}}\right\rangle\left\langle\psi_{\mathrm{n}}\right|=\mathbb{1}
$$

$$
\sum_{n=0}^{N-1} \frac{e^{2 \pi i \frac{k}{N} n}}{\sqrt{N}} \frac{e^{-2 \pi i \frac{k^{\prime}}{N} n}}{\sqrt{N}}=\delta_{k k^{\prime}}
$$

Completeness Relations: cutting propagators

- massless Spin-1

$$
-i \frac{g^{\mu \nu}}{k^{2}-i 0}
$$

$$
\frac{1}{k^{2}-i 0} \rightarrow \underset{\substack{\text { on-shell }}}{\delta\left(k^{2}\right)} \quad \Rightarrow \quad-g^{\mu \nu} \quad \rightarrow \quad \sum_{\text {polarization- }} \epsilon_{\lambda}^{\mu}(k)\left(\epsilon_{\lambda}^{\nu}(k)\right)^{*}
$$

- massive fermions

$$
i \frac{(\not p+m)}{p^{2}-m^{2}-i 0}
$$

$$
\frac{1}{p^{2}-m^{2}-i 0} \rightarrow \delta\left(p^{2}-m^{2}\right)
$$

$$
\Rightarrow \quad(\not p+m) \quad \rightarrow \quad \sum_{\operatorname{spin}-s} u_{s}(p) \bar{u}_{s}(p)
$$

On-shellness for Tree-Level Amplitudes

\&Cauchy's Residue Theorem

$$
\oint \frac{d z}{z\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)}=0
$$

$$
\begin{aligned}
\frac{(-1)}{z_{1} z_{2} \cdots z_{n}} & =\frac{1}{z_{1}\left(z_{1}-z_{2}\right) \cdots\left(z_{1}-z_{n}\right)} \\
& +\frac{1}{\left(z_{2}-z_{1}\right) z_{2} \cdots\left(z_{2}-z_{n}\right)} \\
& +\cdots \cdots \\
& +\frac{1}{\left(z_{n}-z_{1}\right)\left(z_{n}-z_{2}\right) \cdots\left(z_{n}-z_{n-1}\right) z_{n}}
\end{aligned}
$$

On-shellness for Tree-Level Amplitudes

©Cauchy's Residue Theorem

$$
\oint \frac{d z}{z\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)}=0
$$

\&Partial Fractioning

$$
\begin{aligned}
\frac{(-1)}{z_{1} z_{2} \cdots z_{n}} & =\frac{1}{z_{1}\left(z_{1}-z_{2}\right) \cdots\left(z_{1}-z_{n}\right)} \\
& +\frac{1}{\left(z_{2}-z_{1}\right) z_{2} \cdots\left(z_{2}-z_{n}\right)} \\
& +\cdots \cdots \\
& +\frac{1}{\left(z_{n}-z_{1}\right)\left(z_{n}-z_{2}\right) \cdots\left(z_{n}-z_{n-1}\right) z_{n}}
\end{aligned}
$$

On-shellness for Tree-Level Amplitudes

Cauchy's Residue Theorem

$$
\oint \frac{d z}{z\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)}=0
$$

PPartial Fractioning

$$
\begin{aligned}
\frac{(-1)}{z_{1} z_{2} \cdots z_{n}} & =\frac{1}{z_{1}\left(z_{1}-z_{2}\right) \cdots\left(z_{1}-z_{n}\right)} \\
& +\frac{1}{\left(z_{2}-z_{1}\right) z_{2} \cdots\left(z_{2}-z_{n}\right)} \\
& +\cdots \cdots \\
& +\frac{1}{\left(z_{n}-z_{1}\right)\left(z_{n}-z_{2}\right) \cdots\left(z_{n}-z_{n-1}\right) z_{n}}
\end{aligned}
$$

OOn-shell condition (cuts)

$$
\left(q_{i}-z_{i} \eta\right)^{2}-m_{i}^{2}=0, \quad z_{i}=\frac{q_{i}^{2}-m_{i}^{2}}{2 \eta \cdot q_{i}}
$$

\notin Denominator decomposition

$$
\begin{aligned}
(-1) \frac{1}{q_{1}^{2}-m_{1}^{2}} \frac{1}{q_{2}^{2}-m_{2}^{2}} \cdots \frac{1}{q_{n}^{2}-m_{n}^{2}} & =\frac{1}{q_{1}^{2}-m_{1}^{2}} \frac{1}{\left(q_{2}-z_{1} \eta\right)^{2}-m_{2}^{2}} \cdots \frac{1}{\left(q_{n}-z_{1} \eta\right)^{2}-m_{n}^{2}} \\
& +\frac{1}{\left(q_{1}-z_{2} \eta\right)^{2}-m_{1}^{2}} \frac{1}{q_{2}^{2}-m_{2}^{2}} \cdots \frac{1}{\left(q_{n}-z_{2} \eta\right)^{2}-m_{n}^{2}} \\
& +\cdots \cdots \cdots \\
& +\frac{1}{\left(q_{1}-z_{n} \eta\right)^{2}-m_{1}^{2}} \frac{1}{\left(q_{2}-z_{n} \eta\right)^{2}-m_{2}^{2}} \cdots \frac{1}{q_{n}^{2}-m_{n}^{2}}
\end{aligned}
$$

Tree-Level Amplitudes

- Cauchy's Residue Theorem

$$
\frac{1}{2 \pi i} \oint \frac{\mathcal{A}_{n}(z)}{z}=\mathcal{A}_{n}(\infty)=\mathcal{A}_{n}(0)+\sum_{\text {poles }} \operatorname{Res} \mathcal{A}_{n}(z)
$$

If $\mathcal{A}_{n}(\infty)=0$, then one obtaines the relation

$$
\mathcal{A}_{n}(0)=-\sum_{\text {poles }} \operatorname{Res} \mathcal{A}_{n}(z)
$$

$$
\mathcal{A}_{n}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)=\sum_{\text {partition }} \sum_{h} \mathcal{A}_{L}\left(p_{r}, \ldots, \hat{p}_{i}, \ldots, p_{s},-\hat{P}_{r: s}^{h}\right) \frac{1}{P^{2}}, \mathcal{A}_{R}\left(\hat{P}_{r: s}^{h}, p_{s+1}, \ldots, \hat{p}_{j}, \ldots, p_{r-1}\right)
$$

Tree-level decomposition by partial fractioning: is this an accident?

One-Loop Scattering Amplitudes

- n-particle Scattering: $1+2 \rightarrow 3+4+\ldots+n$
- Reduction to a Scalar-Integral Basis Passarino-Veltman

$$
\text { (1-Loop }=\sum_{10^{2}-10^{3}} \int d^{D} \ell \frac{\ell^{\mu} \ell^{v} \ell^{\rho} \ldots}{D_{1} D_{2} \ldots D_{n}}=c_{4} \square+c_{3} \square+c_{2} \searrow+c_{1} \longrightarrow
$$

- Known: Master Integrals

$$
\square=\int d^{D} \ell \frac{1}{D_{1} D_{2} D_{3} D_{4}}, \quad>=\int d^{D} \ell \frac{1}{D_{1} D_{2} D_{3}}, \quad \searrow \quad=\int d^{D} \ell \frac{1}{D_{1} D_{2}}, \quad \bigcap=\int d^{D} \ell \frac{1}{D_{1}}
$$

- Unknowns: c_{i} are rational functions of external kinematic invariants

Cutting Rules

- Discontinuity of Feynman Integrals Landau \& Cutkosky

Cut Integral in the P_{12}^{2}-channel

$$
d^{4} \Phi \equiv d^{4} \ell_{1} d^{4} \ell_{2} \delta^{(4)}\left(\ell_{1}+\ell_{2}-P_{12}\right) \delta^{(+)}\left(\ell_{1}^{2}-m_{1}^{2}\right) \delta^{(+)}\left(\ell_{2}^{2}-m_{2}^{2}\right)
$$

Cutting Rules

- Discontinuity of Feynman Integrals Landau \& Cutkosky

Cut Integral in the P_{12}^{2}-channel

Cutting Rules

- Discontinuity of Feynman Integrals Landau \& Cutkosky

Cut Integral in the P_{12}^{2}-channel

Unitarity \& Cutting Rules

- Optical Theorem from Unitarity $\quad S \equiv 1+i T: \quad S^{\dagger} S=1 \quad \Rightarrow \quad 2 \operatorname{Im} T=-i\left(T-T^{\dagger}\right)=T^{\dagger} T$
- One-loop Amplitude:

- Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar \& Kosower

$$
\begin{aligned}
2 \operatorname{Im}\left\{A_{n}^{1-1 \text { loop }}\right\}= & \overbrace{i}^{j} \overbrace{\ell_{1}}^{\ell_{2}} \text { tree } \\
& \text { on - shell condition }: \frac{1}{\left(\ell_{i}^{2}-m_{i}^{2}+i 0\right)} \rightarrow \delta\left(c_{3}\right)
\end{aligned}
$$

The Strategy: Generalised Unitarity

- One-loop Amplitude:

$$
A_{n}^{1-\text {-loop }}=\underbrace{\text { 1-loop }}=c_{4} \longrightarrow+c_{3} \searrow+c_{2} ヤ+c_{1} \bigcap
$$

■ Multiple-cut as projectors

Cut-Conditions

- Loop momentum decomposition $\quad \ell_{\mu}=x_{1} p_{\mu}+x_{2} q_{\mu}+x_{3} \varepsilon_{\mu}^{+}+x_{4} \varepsilon_{\mu}^{-}$
- On-shell condition $\delta\left(\ell_{i}^{2}-m_{i}^{2}\right)$
- under Multiple On-shellness Conditions :
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are integration-variable

Cut-Conditions

- Loop momentum decomposition

$$
\ell_{\mu}=x_{1} p_{\mu}+x_{2} q_{\mu}+x_{3} \varepsilon_{\mu}^{+}+x_{4} \varepsilon_{\mu}^{-}
$$

- On-shell condition $\delta\left(\ell_{i}^{2}-m_{i}^{2}\right)$
- under Multiple On-shellness Conditions :
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are integration-variable

To integrate or not to integrate: that is the question

To integrate...

Cut-Integration

 byCauchy's residue theorem (and its generalization)

- 4ple-cut

$$
c_{\left[K_{1}\left|K_{2}\right| K_{3} \mid K_{4}\right]}=\frac{I_{4}\left(\ell_{+}\right)+I_{4}\left(\ell_{-}\right)}{2}
$$

Cauchy's formula

- 3ple-cut Forde

$c_{\left[K_{1}, K_{2}, K_{3}\right]}=\frac{\operatorname{Res}_{t=0}\left\{I_{3}\left(\ell^{+}\right)+I_{3}\left(\ell^{-}\right)\right\}}{2}$
Laurent series
- 2ple-cut р.м.
A_{L}

$$
\begin{gathered}
\int d^{4} \Phi=(1-2 \rho) \iint \frac{d z \wedge d \bar{z}}{(1+z \bar{z})^{2}} \\
2 \pi i \mathcal{F}\left(z_{0}\right)=\int_{\partial D} \frac{\mathcal{F}(z)}{z-z_{0}} d z-\iint_{D} \frac{\mathcal{F}_{\bar{z}}}{z-z_{0}} d \bar{z} \wedge d z . \quad \text { Cauchy-Pompeiu formula } \\
c_{[K]}=\oint_{\mathrm{rat}}=\oint d z F^{\mathrm{rat}}\left(z, z^{*}\right)=\operatorname{Res}_{z=0} F^{\mathrm{rat}}\left(z, z^{*}\right)+\operatorname{Res}_{z \neq 0} F^{\mathrm{rat}}\left(z, z^{*}\right)
\end{gathered}
$$

Analytic Calculations: state-of-the-art

gg \rightarrow g g g Britto, Feng \& P.M. (2006)

$Y Y \rightarrow Y Y Y Y$

Binoth, Gehrmann, Heinrich \& P.M. (2007)

gg \rightarrow Hg $g \quad$ Badger, Glover, Williams, P.M. (2008-2009)

Optical-Thm and Berry Phase

- Geometric Phases

Simple Geometry

Aharonov-Bohm effect

$$
\begin{gathered}
\int_{\Sigma} \nabla \times \mathbf{F} \cdot d \boldsymbol{\Sigma}=\oint_{\partial \Sigma} \mathbf{F} \cdot d \mathbf{r}, \\
\nabla \times \mathbf{A}=\mathbf{B}
\end{gathered}
$$

$$
\varphi=\frac{q}{\hbar} \int_{P} \mathbf{A} \cdot d \mathbf{x}
$$

Optical Theorem

$$
\begin{aligned}
\Delta & =\int d^{4} \Phi A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}= \\
& =-i\left[A_{n \rightarrow m}^{\text {one-loop }}-A_{m \rightarrow n}^{* \text { one-loop }}\right]= \\
& =2 \operatorname{Im}\left\{A_{n \rightarrow m}^{\text {one-loop }}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =(1-2 \rho) \iint d z \wedge d \bar{z} \frac{A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}}{(1+z \bar{z})^{2}}= \\
& =(1-2 \rho) \oint d z \int d \bar{z} \frac{A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}}{(1+z \bar{z})^{2}},
\end{aligned}
$$

The double-cut is the flux of a 2-form. The anholonomy phase shift is a consequence of Stokes' Theorem.
...or not to integrate

Cut-Integration replaced
 by
 partial fractioning
 (and its generalization)

Multi-Loop Integrand-Reduction by
 Polynomial Division

Ossola \& P.M. (2011)
Badger, Frellesvig, Zhang (2011)
Zhang (2012)
Mirabella, Ossola, Peraro, \& P.M (2012)

DProblem: what is the form of the residues?
 Q"find the right variables encoding the cut-structure"

8 variables

- ISP's = Irreducible Scalar Products:
$-q$-components which can variate under cut-conditions
- spurious: vanishing upon integration
- non-spurious: non-vanishing upon integration \Rightarrow MI's

A simple idea from Modular Arithmetic

IV Division Modulo n
The following statements are all equivalent:
(i) $a \equiv b(\bmod n)$
(ii) $n \mid(a-b)$
(iii) $a-b=n t$ for some $t \in \mathbb{Z}$
(iv) $a=b+n t$ for some $t \in \mathbb{Z}$.

hold the remainder !

Multivariate Polynomial Division

Zhang (2012);
Mirabella, Ossola, Peraro, \& P.M. (2012)

YIdeal

Groebner Basis

$$
\mathcal{G}_{i_{1} \cdots i_{n}}=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\}
$$

n-ple cut-conditions

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

$$
D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0
$$

Multivariate Polynomial Division

YIdeal

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{k}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

©Groebner Basis

$$
\begin{aligned}
& \mathcal{G}_{i_{1} \ldots i_{n}}=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\} \\
& D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0
\end{aligned}
$$

$\Psi_{\text {Polynomial Division }} \quad \mathcal{N}_{i_{1} \cdots i_{n}}(\mathbf{z})=\Gamma_{i_{1} \cdots i_{n}}+\Delta_{i_{1} \cdots i_{n}}(\mathbf{z})$,
$母$ Remainder \sim Residue $\quad \Delta_{i_{1} \cdots i_{n}}(\mathbf{z})$
\&Quotients

$$
\begin{aligned}
\Gamma_{i_{1} \cdots i_{n}} & =\sum_{i=1}^{m} \mathcal{Q}_{i}(\mathbf{z}) g_{i}(\mathbf{z}) \quad \text { belongs to the ideal } \mathcal{J}_{i_{1} \cdots i_{n}}, \\
& =\sum_{\kappa=1}^{n} \mathcal{N}_{i_{1} \cdots i_{\kappa-1}},
\end{aligned}
$$

Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, \& P.M. (2012)

Multi-Loop Integrand Decomposition

- Multi-(particle)-pole decomposition
$\mathcal{I}_{i_{1} \cdots i_{n}}=\frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{n}}}$
$\mathcal{I}_{i_{1} \cdots i_{n}}=\sum_{1=i_{1} \ll i_{\max }}^{n} \frac{\Delta_{i_{1} i_{2} \ldots . i_{\max }}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\text {max }}}}+\sum_{1=i_{1} \ll i_{\max }-1}^{n} \frac{\Delta_{i_{1} i_{2} \ldots . . i_{\max }-1}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-1}}$

$$
+\sum_{1=i_{1} \ll i_{\max }-2}^{n} \frac{\Delta_{i_{1 i} 2 . . . i_{\max }-2}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-2}}+\cdots \cdots+\sum_{1=i_{1}<i_{2}}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}}+Q_{\emptyset}
$$

Multi-Loop Integrand Decomposition

- Multi-(particle)-pole decomposition
$\mathcal{I}_{i_{1} \cdots i_{n}}=\frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{n}}}$
$\mathcal{I}_{i_{1} \cdots i_{n}}=\sum_{1=i_{1} \ll i_{\max }}^{n} \frac{\Delta_{i_{1} i_{2} \ldots . . i_{\max }}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\text {max }}}}+\sum_{1=i_{1} \ll i_{\max }-1}^{n} \frac{\Delta_{i_{1} z_{2}, \ldots i_{\max }-1}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-1}}$

$$
+\sum_{1=i_{1} \ll i_{\max }-2}^{n} \frac{\Delta_{i_{1} i_{2}, . . i_{\max }-2}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\text {max }}-2}}+\cdots \cdots+\sum_{1=i_{1}<i_{2}}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}}+Q_{0}
$$

Tree-level
decomposition
by
Apparently no!
partial fractioning:
is this an accident?

(V) Parametric form of the residues is process independent.
Knowing the parametric form of residues is mandatory!!!

$$
\begin{aligned}
\mathcal{I}_{i_{1} \cdots i_{n}}= & \sum_{1=i_{1} \ll i_{\max }}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }}}+\sum_{1=i_{1} \ll i_{\max }-1}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-1}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-1}} \\
& +\sum_{1=i_{1} \ll i_{\max }-2}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-2}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-2}}+\cdots+\sum_{1=i_{1}<i_{2}}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}}+Q_{\emptyset}
\end{aligned}
$$

(V) Parametric form of the residues

Use your favourite generator,
(Feynman diagrams, tree-amplitudes, currents,...),
and sample I($\left.q^{\prime} s\right)$ as many time as the
number of unknown coefficients is process independent.
(V) Actual values of the coefficients is process dependent.

The Maximum-Cut Theorem

At ℓ loops, in four dimensions, we define a maximum-cut as a (4 $)$-ple cut

$$
D_{i_{1}}=D_{i_{2}}=\cdots=D_{i_{4 \ell}}=0,
$$

which constrains completely the components of the loop momenta. In four dimensions this implies the presence of four constraints for each loop momenta.
We assume that:
in non-exceptional phase-space points, a maximum-cut has a finite number n_{s} of solutions, each with multiplicity one.
Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by n_{s} coefficients, which admits a univariate representation of degree $\left(n_{s}-1\right)$.

EXAMPLES OF MAXIMUM-CUTS

diagram	Δ	n_{s}	diagram	Δ

One-Loop Integrand-Reduction

One-Loop Integrand Decomposition

- Choice of 4-dimensional basis for an m-point residue

$$
e_{1}^{2}=e_{2}^{2}=0, \quad e_{1} \cdot e_{2}=1, \quad e_{3}^{2}=e_{4}^{2}=\delta_{m 4}, \quad e_{3} \cdot e_{4}=-\left(1-\delta_{m 4}\right)
$$

- Coordinates: $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \equiv\left(x_{1}, x_{2}, x_{3}, x_{4}, \mu^{2}\right)$

$$
q_{4-\operatorname{dim}}^{\mu}=-p_{i_{1}}^{\mu}+x_{1} e_{1}^{\mu}+x_{2} e_{2}^{\mu}+x_{3} e_{3}^{\mu}+x_{4} e_{4}^{\mu}, \quad q^{2}=q_{4-\operatorname{dim}}^{2}-\mu^{2}
$$

- Generic numerator

$$
\mathcal{N}_{i_{1} \cdots i_{m}}=\sum_{j_{1}, \ldots, j_{5}} \alpha_{\vec{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}, \quad\left(j_{1} \ldots j_{5}\right) \quad \text { such that } \quad \operatorname{rank}\left(\mathcal{N}_{i_{1} \cdots i_{m}}\right) \leq m
$$

- Residues

$$
\begin{aligned}
\Delta_{i_{1} i_{2} i_{3} i_{4} i_{5}} & =c_{0} \\
\Delta_{i_{1} i_{2} i_{3} i_{4}} & =c_{0}+c_{1} x_{4}+\mu^{2}\left(c_{2}+c_{3} x_{4}+\mu^{2} c_{4}\right) \\
\Delta_{i_{1} i_{2} i_{3}} & =c_{0}+c_{1} x_{3}+c_{2} x_{3}^{2}+c_{3} x_{3}^{3}+c_{4} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{4}^{3}+\mu^{2}\left(c_{7}+c_{8} x_{3}+c_{9} x_{4}\right) \\
\Delta_{i_{1} i_{2}} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{3}^{2}+c_{6} x_{4}^{2}+c_{7} x_{2} x_{3}+c_{9} x_{2} x_{4}+c_{9} \mu^{2} \\
\Delta_{i_{1}} & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

One-Loop Integrand Decomposition

$\mathcal{A}_{n}^{\text {one-loop }}=\int d^{-2 \epsilon} \mu \int d^{4} q A_{n}\left(q, \mu^{2}\right), \quad A_{n}\left(q, \mu^{2}\right) \equiv \frac{\mathcal{N}_{n}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{n-1}} \quad \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}=\left(q+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2}$

We use a bar to denote objects living in $d=4-2 \epsilon$ dimensions

$$
\phi=\not q+\mu, \quad \text { with } \quad \bar{q}^{2}=q^{2}-\mu^{2} .
$$

■ @ the integrand-level

$$
\begin{aligned}
& A_{n}\left(q, \mu^{2}\right) \neq \frac{c_{5,0}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3} \bar{D}_{4}}+\frac{c_{4,0}+c_{4,4} \mu^{4}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3}}+\frac{c_{3,0}+c_{3,7} \mu^{2}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}+\frac{c_{2,0}+c_{2,9} \mu^{2}}{\bar{D}_{0} \bar{D}_{1}}+\frac{c_{1,0}}{\bar{D}_{0}} \\
& \quad=\frac{c_{5,0}+f_{01234}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3} \bar{D}_{4}}+\frac{c_{4,0}+c_{4,4} \mu^{4}+f_{0123}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3}}+\frac{c_{3,0}+c_{3,7} \mu^{2}+f_{012}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}+\frac{c_{2,0}+c_{2,9} \mu^{2}+f_{01}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1}}+\frac{c_{1,0}+f_{0}\left(q, \mu^{2}\right)}{\bar{D}_{0}}
\end{aligned}
$$

method:

Reconstruct the complete polynomial residues to extract the coefficients of MI's

2.2.2 Quintuple cut

The residue of the quintuple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{m}=0$, defined as,

$$
\Delta_{i j k \ell m}(\bar{q})=\operatorname{Res}_{i j k \ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}\right\}=c_{5,0}^{(i j k \ell m)} \mu^{2} .
$$

2.2.3 Quadruple cut

The residue of the quadruple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{\ell}=0$, defined as,
$\Delta_{i j k \ell}(\bar{q})=\operatorname{Res}_{i j k \ell}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}\right\}=c_{4,0}^{(i j k \ell)}+c_{4,2}^{(i j k \ell)} \mu^{2}+c_{4,4}^{(i j k \ell)} \mu^{4}-\left(c_{4,1}^{(i j k \ell)}+c_{4,3}^{(i j k \ell)} \mu^{2}\right)\left[\left(K_{3} \cdot e_{4}\right) x_{4}-\left(K_{3} \cdot e_{3}\right) x_{3}\right]\left(e_{1} \cdot e_{2}\right)$,

2.2.4 Triple cut

The residue of the triple-cut, $\bar{D}_{i}=\bar{D}_{j}=\bar{D}_{k}=0$, defined as,
$\Delta_{i j k}(\bar{q})=\operatorname{Res}_{i j k}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell}}\right\}$

SAA A OA Ossola, Reiter, Tramontano, \& P.M. (2010)

${ }_{\mathrm{T}}^{2}$ Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level

$$
=c_{2,0}^{(i j)}+c_{2,9}^{(i j)} \mu^{2}+\left(c_{2,1}^{(i j)} x_{1}-c_{2,3}^{(i j)} x_{4}-c_{2,5}^{(i j)} x_{3}\right)\left(e_{1} \cdot e_{2}\right)+\left(c_{2,2}^{(i j)} x_{1}^{2}+c_{2,4}^{(i j)} x_{4}^{2}+c_{2,6}^{(i j)} x_{3}^{2}-c_{2,7}^{(i j)} x_{1} x_{4}-c_{2,8}^{(i j)} x_{1} x_{3}\right)\left(e_{1} \cdot e_{2}\right)^{2}
$$

2.2.6 Single cut

The residue of the single-cut, $\bar{D}_{i}=0$, defined as,

$$
\begin{aligned}
\Delta_{i}(\bar{q}) & =\operatorname{Res}_{i}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}-\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}-\sum_{i<j}^{n-1} \frac{\Delta_{i j}(\bar{q})}{\bar{D}_{i} \bar{D}_{j}}\right\} \\
& =c_{1,0}^{(i)}+\left(c_{1,1}^{(i)} x_{2}+c_{1,2}^{(i)} x_{1}-c_{1,3}^{(i)} x_{4}-c_{1,4}^{(i)} x_{3}\right)\left(e_{1} \cdot e_{2}\right)
\end{aligned}
$$

Improved Integrand Red'n

- Integrand Reduction

$$
\begin{array}{ll}
\Delta_{i_{1} \ldots i_{m}}\left(q, \mu^{2}\right)=\operatorname{Res}_{i_{1} \ldots i_{m}} & \left\{\frac{\mathcal{N}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{n}}}-\sum_{k=(m+1)}^{5} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \frac{\text { universal }}{} \frac{\Delta_{i_{1} i_{2} \ldots i_{k}}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{k}}}\right\} \\
\text { polynomial } \\
\mathrm{a}+\mathrm{bx}+\mathrm{c} \mathrm{x} \wedge 2+\ldots & \text { non-polynomial }
\end{array}
$$

$$
=c_{4}
$$

Improved Integrand Red'n

- Integrand Reduction with Laurent series expansion

$$
\begin{aligned}
& \text { 0-4I } \\
& \text { coefficients of MI's :: a = a'+ a" } \\
& \left.X=c_{4}\right)\left(c_{3}\right) \\
& X=c_{4} \text { 昂 }+c_{3} \text { XX+ } c_{2} \text { M } \\
& \text { Ninja C++ library } \text { Peraro }
\end{aligned}
$$

Samurai. . . Ossola Reiter Tramontano P.M.

* Integrand Reduction for One-Loop Integrals Ossola Papadopoulos Pittau
* Generalised D-dim Unitarity
:: Complete reduction to D-reg Master Integrals Anastasiou, Britto, Feng, Kunszt, P.M.
:: cut-constructible \& rational terms at once Ellis Giele Kunszt Melnikov
...meets Golem sinoth guilet Heinich pilon Reter
* Integrand Generation
* Tensor Reduction

Automatic one-loop calculations

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano P.M.

$$
\sigma_{\text {NLO }}=\int_{n}\left(d \sigma_{\text {Born }}+d \sigma_{\text {Virtual }}+\int_{1} d \sigma_{\text {Subtraction }}\right)+\int_{n+1}\left(d \sigma_{\text {Real }}-d \sigma_{\text {Subtraction }}\right)
$$

Monte Carlo Generator

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano P.M.

$$
\sigma_{\text {NLO }}=\int_{n}\left(d \sigma_{\text {Born }}+d \sigma_{\text {Virtual }}+\int_{1} d \sigma_{\text {Subtraction }}\right)+\int_{n+1}\left(d \sigma_{\text {Real }}-d \sigma_{\text {Subtraction }}\right)
$$

Monte Carlo Generator

> Multi Process One-Loop Provider

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano P.M.

MC Interfaces
Beyond SM EW Physics

Top Physics

Higgs \& Jazz?

The path to Hjjj @ NLO

Challenges

- effective Hgg-coupling:

higher rank :: r < n+2
the rank r of the numerator can be larger than the number n of denominators

■ Extending the Polynomial Residues
Mirabella Peraro P.M.

- Over 10,000 diagrams
- Higher-Rank terms
- 60 Rank- 7 hexagons

pp-->Hjj @ NLO

v. Deurzen Greiner Luisoni Mirabella Ossola Peraro v. Soden-Fraunhofen Tramontano P.M.
Phys.Lett. 8721 (2013) 74-81, 1301.0493 [hep-ph]

- our amplitudes confirmed by MCFM (v6.4)

Campbell, Ellis, Williams

pp-->Hjjj @ NLO

Cullen v. Deurzen Greiner Luisoni
Mirabella Ossola Peraro Tramontano P.M.
1307.4737 to appear in PRL

xsection

distributions

μ / μ_{0}

GoSam+Sherpa+MadDipole

$$
\mu_{F}=\mu_{R}=\frac{\hat{H}_{T}}{2}=\mu_{0}
$$

$$
\hat{H}_{T}=\sqrt{m_{H}^{2}+p_{T, H}^{2}}+\sum_{i}\left|p_{T, i}\right|
$$

pp-->HtTj
 @ NLO

van Deurzen Luisoni Mirabella Ossola Peraro P.M.

$$
\mathrm{GA}_{T}=\sqrt[3]{m_{T, H} m_{T, t} m_{T, \bar{t}}}+\sum_{\text {jets } j}\left|p_{T, j}\right|
$$

GoSam+Ninja+Sherpa

$t \bar{t} H+1 j$	$\mathbf{1 8 9 5} \mathbf{~ N L O}$	Time/psp
$q q \rightarrow H t \bar{t} g$	320 NLO	80 ms
$g g \rightarrow H t \bar{t} g$	1575 NLO	1685 ms

$$
H_{T}=\sum_{\substack{\text { final } \\ \text { states } f}}\left|p_{T, f}\right|
$$

GoSam + Ninja: more app's

van Deurzen Luisoni Mirabella Ossola Peraro P.M. (2013)

Subprocess	Time/PS-POINT [ms]
pp \rightarrow Wjjj	
$d \bar{u} \rightarrow \bar{\nu}_{e} e^{-} g g g$	226
pp \rightarrow Z $\mathbf{j} \mathbf{j j}$	
$d \bar{d} \rightarrow e^{+} e^{-} g g g$	1911.4
$\mathbf{p p} \rightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{b} \overline{\mathbf{b}} \quad\left(\mathbf{m}_{\mathbf{b}} \neq 0\right)$	
$d \bar{d} \rightarrow t \bar{t} b \bar{b}$	178
$g g \rightarrow t \bar{t} b \bar{b}$	5685
$\begin{aligned} & \hline \hline \mathbf{p p} \rightarrow \mathbf{W b b} \mathbf{j} \quad\left(\mathbf{m}_{\mathbf{b}} \neq \mathbf{0}\right) \\ & u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g \end{aligned}$	67
pp \rightarrow Hjjjj $\quad\left(\mathbf{G F}, \mathrm{m}_{\mathrm{t}} \rightarrow \infty\right)$	
$g g \rightarrow H g g g$	11266
$g g \rightarrow H g u \bar{u}$	999
$u \bar{u} \rightarrow H g u \bar{u}$	157
$u \bar{u} \rightarrow H g d \bar{d}$	68
$\text { pp } \rightarrow \mathbf{H j j j} \quad(\mathrm{VBF})$	101
pp \rightarrow Hjjjjj (VBF)	
$u \bar{u} \rightarrow H g g u \bar{u}$	669
$u \bar{u} \rightarrow H u \bar{u} u \bar{u}$	600

faster, higher accuracy, more stable, no-problem with multiple masses

Intel i7 960 (3.20GHz) CPU + Intel fortran compiler ifort (with optimization O2).

Two-Loop Integrand-Reduction

2-loop 5-point amplitudes in N=4 SYM \& N=8 Sugra

Mirabella, Ossola, Peraro, \& P.M. (2012)

2-loop 5-point amplitudes in N=4 SYM \& N=8 Sugra

(a)

(d)

(b)

(c) 5

Integrand Red'n \& Color-Kinematic Duality

```
&Jacoby identity for trees
```


$=$


```
Bern Carrasco Johansson
```

kinematic term of scattering amplitudes fulfills the same algebra as the color term

Integrand Red'n \& Color-Kinematic Duality

$\$$ Jacoby identity for trees

(I) integrand-reduction

Schubert \& P.M.

Integrand Red'n \& Dim-reg Amplitudes

Mirabella, Ossola, Peraro, \& P.M. (2013)

Basis :: Magnus Expansion for Feynman Integrals

$$
(\exp X)(\exp Y)=\exp (X+Y+(1 / 2)[X, Y]+(1 / 12)[X,[X, Y]]-(1 / 12)[Y,[X, Y]]+\ldots) .
$$

Differential Equations for Master Integrals

Kotikov; Remiddi;
Caffo, Czyc, Remiddi:
Gehrmann, Remiddi;
Bonciani, Remiddi, P.M.;
Argeri, Bonciani, Ferroglia, Remiddi, P.M. Henn;
Henn, Smirnov \& Smirnov

$$
P=p_{1}+p_{2}
$$

$$
\begin{aligned}
& p^{2} \frac{\partial}{\partial p^{2}}\{p \longrightarrow p\}=\frac{1}{2} p_{\mu} \frac{\partial}{\partial p_{\mu}}\{p \longrightarrow p\} \\
& P^{2} \frac{\partial}{\partial P^{2}}\left\{p_{p_{2}}^{p_{1}} p_{3}\right\}=\left[A\left(p_{1, \mu} \frac{\partial}{\partial p_{1, \mu}}+p_{2, \mu} \frac{\partial}{\partial p_{2, \mu}}\right)+B\left(p_{1, \mu} \frac{\partial}{\partial p_{2, \mu}}+p_{2, \mu} \frac{\partial}{\partial p_{1, \mu}}\right)\right]\left\{p_{p_{2}}^{p_{1}} p_{2}\right\} \\
& P^{2} \frac{\partial}{\partial P^{2}}\left\{\sim_{p_{2}}^{p_{1}}\right\}=\left[C\left(p_{1, \mu}^{p_{3}} \frac{\partial}{\partial p_{1, \mu}}-p_{3, \mu} \frac{\partial}{\partial p_{3, \mu}}\right)+D p_{2, \mu} \frac{\partial}{\partial p_{2, \mu}} \neq E\left(p_{1, \mu}+p_{3, \mu}\right)\left(\frac{\partial}{\partial p_{3, \mu}}-\frac{\partial}{\partial p_{1, \mu}}+\frac{\partial}{\partial p_{2, \mu}}\right)\right]\left\{\int_{p_{2}}^{p_{1}}\right\}_{p_{4}}^{p_{3}}
\end{aligned}
$$

Magnus Expansion

© System of 1st ODE

$$
\partial_{x} Y(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0} . \quad A(x) \text { non-commutative }
$$

$$
\begin{gathered}
\Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x) . \\
\Omega_{1}(x)=\int_{x_{0}}^{x} d \tau_{1} A\left(\tau_{1}\right), \\
\Omega_{2}(x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A\left(\tau_{1}\right), A\left(\tau_{2}\right)\right], \\
\Omega_{3}(x)=\frac{1}{6} \int_{x_{0}}^{t} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3}\left[A\left(\tau_{1}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{3}\right)\right]\right]+\left[A\left(\tau_{3}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{1}\right)\right]\right] .
\end{gathered}
$$

Itterated integrals and rooted trees

$$
\Omega(t)=\bullet-\frac{1}{2} Y+\frac{1}{4}
$$

Magnus \& Dyson Series

Magnus

$$
Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0},
$$

© Dyson

$$
Y(x)=Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x), \quad Y_{n}(x) \equiv \int_{x_{0}}^{x} d \tau_{1} \ldots \int_{x_{0}}^{\tau_{n-1}} d \tau_{n} A\left(\tau_{1}\right) A\left(\tau_{2}\right) \cdots A\left(\tau_{n}\right)
$$

$$
\sum_{j=1}^{\infty} \Omega_{j}(x)=\log \left(Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x)\right)
$$

$$
Y_{1}=\Omega_{1},
$$

$$
Y_{2}=\Omega_{2}+\frac{1}{2!} \Omega_{1}^{2},
$$

$$
Y_{3}=\Omega_{3}+\frac{1}{2!}\left(\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}\right)+\frac{1}{3!} \Omega_{1}^{3},
$$

$$
Y_{n}=\Omega_{n}+\sum_{j=2}^{n} \frac{1}{j} Q_{n}^{(j)} .
$$

- Linear-eps Matrix

$$
\partial_{x} f(\epsilon, x)=A(\epsilon, x) f(\epsilon, x), \quad A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x)
$$

- change of basis :: Magnus \#1

$$
f(\epsilon, x)=B_{0}(x) g(\epsilon, x), \quad B_{0}(x) \equiv e^{\Omega\left[A_{0}\right]\left(x, x_{0}\right)} \quad \quad \partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x)
$$

- Canonical form Henn (2013)

$$
\partial_{x} g(\epsilon, x)=\epsilon \hat{A}_{1}(x) g(\epsilon, x) \quad \hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

- Solution :: Magnus \#2 (or Dyson)

$$
g(\epsilon, x)=B_{1}(\epsilon, x) g_{0}(\epsilon), \quad B_{1}(\epsilon, x)=e^{\Omega\left[\epsilon \hat{A}_{1}\right]\left(x, x_{0}\right)}
$$

YUniform Transcendentality!
\#Feynman integrals can be determined from differential equations that looks like gauge transformations

- intial set of MI's

after rotation

$$
\partial_{x} g(\epsilon, x)=\epsilon \hat{A}_{1}(x) g(\epsilon, x), \quad \hat{A}_{1}(x)=\frac{M_{1}}{x}+\frac{M_{2}}{1+x}+\frac{M_{3}}{1-x},
$$

$M_{1}=\left(\begin{array}{ccccccccccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 5 & -6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -4 & 0 & -2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 1 & -2 & -3 & 0 & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 2 & 0 & 0 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 3 & 3 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & -\frac{1}{2} & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & -2 & -1 & 0 & -2 & 1 & 0 & 2 & 0 & -2 & 0 & 0 & -2 & -2 & 2 \\ 0 & 0 & 0 & 0 & -1 & \frac{1}{2} & 0 & 3 & -2 & 0 & -6 & -2 & 0 & 0 & -4 & -4 & 4\end{array}\right)$
$M_{2}=\left(\begin{array}{ccccccccccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -6 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & \frac{1}{2} & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -6 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -4\end{array}\right)$
$\left(\begin{array}{cccccccccccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -6 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -12 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & -4 & 0 & 0 & -4 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4\end{array}\right)$

$$
\begin{aligned}
M_{-2}= & \frac{1}{2} \\
M_{-1}= & \frac{5}{2}-\left[1-\frac{2}{(1-x)}\right] H(0, x) \\
M_{0}= & \frac{19}{2}+\zeta(2)+\left[1-\frac{2}{(1-x)}\right][\zeta(2)-5 H(0, x)+2 H(-1,0, x)] \\
& +\frac{2}{(1-x)} H(0,0, x)+\left[\frac{1}{(1-x)}-\frac{1}{(1+x)}\right][\zeta(2) H(0, x) \\
& +H(0,0,0, x)]
\end{aligned}
$$

$$
\frac{N_{-2}}{a}=\frac{1}{8}+\frac{1}{16}\left[x+\frac{1}{x}\right]
$$

$$
\frac{N_{-1}}{a}=\frac{9}{32}\left[2+x+\frac{1}{x}\right]-\frac{1}{8}\left[4+x-\frac{1}{x}\right] H(0, x)+\frac{1}{(1-x)} H(0, x)
$$

$$
\frac{N_{0}}{a}=\frac{63}{32}+\frac{\zeta(2)}{2}+\frac{63}{64}\left[\left(1+\frac{16}{63} \zeta(2)\right) x+\frac{1}{x}\right]-\frac{\zeta(2)}{(1-x)}-\frac{1}{16}[32+9 x
$$

$$
\left.-\frac{9}{x}\right] H(0, x)+\frac{(16+\zeta(2))}{4(1-x)} H(0, x)-\frac{\zeta(2)}{4(1+x)} H(0, x)-\frac{1}{4}\left[2-\frac{1}{x}\right.
$$

$$
\left.\frac{4}{(1-x)}\right] H(0,0, x)+\frac{1}{4}\left[4+x-\frac{1}{x}-\frac{8}{(1-x)}\right] H(-1,0, x)
$$

$$
+\frac{1}{4}\left[\frac{1}{(1-x)}-\frac{1}{(1+x)}\right] H(0,0,0, x)
$$

$$
\begin{aligned}
g_{12}^{(0)}= & 0 \\
g_{12}^{(1)}= & 0 \\
g_{12}^{(2)}= & 0 \\
g_{12}^{(3)}= & -\mathrm{H}(0,0,0 ; x)-\zeta_{2} \mathrm{H}(0 ; x) \\
g_{12}^{(4)}= & -2 \mathrm{H}(-1,0,0,0 ; x)+2 \mathrm{H}(0,-1,0,0 ; x)+2 \mathrm{H}(0,0,-1,0 ; x) \\
& -3 \mathrm{H}(0,0,0,0 ; x)-4 \mathrm{H}(0,1,0,0 ; x)+\zeta_{2}(-2 \mathrm{H}(-1,0 ; x) \\
& +6 \mathrm{H}(0,-1 ; x)-\mathrm{H}(0,0 ; x))+2 \zeta_{3} \mathrm{H}(0 ; x)+\frac{\zeta_{4}}{4}
\end{aligned}
$$

$$
g_{13}^{(0)}=0
$$

$$
g_{13}^{(1)}=0,
$$

$$
g_{13}^{(2)}=\mathrm{H}(0,0 ; x)+\frac{3 \zeta_{2}}{2}
$$

$$
g_{13}^{(3)}=-2 \mathrm{H}(-1,0,0 ; x)-2 \mathrm{H}(0,-1,0 ; x)+4 \mathrm{H}(0,0,0 ; x)+4 \mathrm{H}(1,0,0 ; x)
$$

$$
+\zeta_{2}(-6 \mathrm{H}(-1 ; x)+2 \mathrm{H}(0 ; x)-3 \log 2)-\frac{\zeta_{3}}{4}
$$

$$
g_{13}^{(4)}=4 \mathrm{H}(-1,-1,0,0 ; x)+4 \mathrm{H}(-1,0,-1,0 ; x)-8 \mathrm{H}(-1,0,0,0 ; x)
$$

$$
-8 \mathrm{H}(-1,1,0,0 ; x)+4 \mathrm{H}(0,-1,-1,0 ; x)-8 \mathrm{H}(0,-1,0,0 ; x)
$$

$$
-8 \mathrm{H}(0,0,-1,0 ; x)+10 \mathrm{H}(0,0,0,0 ; x)+12 \mathrm{H}(0,1,0,0 ; x)
$$

$$
-8 \mathrm{H}(1,-1,0,0 ; x)-8 \mathrm{H}(1,0,-1,0 ; x)+16 \mathrm{H}(1,0,0,0 ; x)
$$

$$
+16 \mathrm{H}(1,1,0,0 ; x)+12 \mathrm{Li}_{4} \frac{1}{2}+\frac{\log ^{4} 2}{2}+2 \zeta_{2}(12 \log 2 \mathrm{H}(-1 ; x)
$$

$$
+12 \log 2 \mathrm{H}(1 ; x)+6 \mathrm{H}(-1,-1 ; x)-2 \mathrm{H}(-1,0 ; x)-8 \mathrm{H}(0,-1 ; x)
$$

$$
\left.+\mathrm{H}(0,0 ; x)-12 \mathrm{H}(1,-1 ; x)+4 \mathrm{H}(1,0 ; x)+3 \log ^{2} 2\right)
$$

$$
-2 \zeta_{3}(5 \mathrm{H}(-1 ; x)+4 \mathrm{H}(0 ; x)+11 \mathrm{H}(1 ; x))-\frac{47 \zeta_{4}}{4}
$$

- intial set of MI's

$$
\begin{array}{ll}
f_{1}=\epsilon^{2} s \mathcal{T}_{a}(s), \quad f_{2}=\epsilon^{2} t \mathcal{T}_{a}(t), & f_{3}=\epsilon^{2} u \mathcal{T}_{a}(u), \\
f_{4}=\epsilon^{3} s \mathcal{T}_{b}(s), & f_{5}=\epsilon^{3} s t \mathcal{T}_{c}(s, t), \\
f_{7}=\epsilon_{6} u \mathcal{T}^{3} s u \mathcal{T}_{c}(s, t), & f_{8}=\epsilon^{4} s \mathcal{T}_{d}(t, u), \\
& f_{9}=\epsilon^{4} t \mathcal{T}_{d}(u, s), \\
f_{11}=\epsilon^{4} s^{2} \mathcal{T}_{e}(s), \\
& -4 \epsilon^{4}\left(u \mathcal{T}_{f}(s, t)-\frac{3}{4 s(4 \epsilon+1)}\left[\epsilon^{2}\left(s^{2} \mathcal{T}_{a}(s, t)+s^{2} \mathcal{T}_{d}(t, u)+t^{2} \mathcal{T}_{a}(t)+u^{2} \mathcal{T}_{a}(u)\right)\right.\right. \\
f_{12}=\epsilon^{4} s t \mathcal{T}_{g}(s, t)-\frac{3}{8 u(4 \epsilon+1)}\left[\epsilon^{2}\left(s^{2} \mathcal{T}_{a}(s)+t^{2} \mathcal{T}_{a}(t)+u^{2} \mathcal{T}_{a}(u)\right)\right. \\
& \left.-4 \epsilon^{4}\left(u^{2} \mathcal{T}_{d}(s, t)+s^{2} \mathcal{T}_{d}(t, u)+t^{2} \mathcal{T}_{d}(u, s)\right)\right],
\end{array}
$$

$\mathcal{T}_{a}(s)$

$\mathcal{T}_{b}(s)$

$\mathcal{T}_{e}(s)$

- after rotation

$$
\begin{aligned}
& \hat{A}(x)=\frac{M_{1}}{x}+\frac{M_{2}}{1-x} \\
& M_{1}=\left(\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{3}{2} & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{3}{2} & -3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-6 & -6 & -\frac{9}{2} & 0 & -4 & -2 & -18 & -12 & -12 & 1 & 1 & -2 \\
\frac{3}{4} & \frac{9}{4} & -\frac{21}{4} & 3 & 2 & -3 & 12 & -6 & -18 & 0 & 0 & -2
\end{array}\right) \\
& M_{2}=\left(\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{3}{2} & 0 & 3 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{3}{2} & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-6 & -6 & -\frac{9}{2} & 0 & -4 & -2 & -18 & -12 & -12 & 1 & 1 & -2 \\
-\frac{21}{4} & \frac{9}{4} & -\frac{27}{4} & -6 & 2 & -4 & 12 & -6 & -24 & 1 & -1 & 0
\end{array}\right)
\end{aligned}
$$

Conclusions

\square A new result in QFT

A unique mathematical framework for Amplitudes at any order in Perturbation Theory
one ingredient: Feynman denominator
one operation: partial fractioning
Multivariate Polynomial Division/Groebner-basis generates the residue at an arbitrary cut

I A new computational method
Recursive generation of the Integrand-decomposition Formula @ any loop
Amplitude decomposition from the shape of residues

Conclusions

I A new result in QFT
A unique mathematical framework for Amplitudes at any order in Perturbation Theory
© one ingredient: Feynman denominator
one operation: partial fractioning
©Multivariate Polynomial Division/Groebner-basis generates the residue at an arbitrary cut

- A new computational method
\&Recursive generation of the Integrand-decomposition Formula @ any loop
Amplitude decomposition from the shape of residues

EResidues' classification complementary to Landau's singularity classification

ON ANALYTIC PROPERTIES OF VERTEX PARTS

 IN QUANTUM FIELD THEORYL. D. LANDAU

Institute for Physical Problems, Moscow

Received 27 April 1959

Abstract: A general method of finding the singularities of quantum field theory values on the

 basis of graph techniques is evolved.
Conclusions

- A new result in QFT

A unique mathematical framework for Amplitudes at any order in Perturbation Theory
one ingredient: Feynman denominator
\% one operation: partial fractioning
©Multivariate Polynomial Division/Groebner-basis generates the residue at an arbitrary cut
\square A new computational method
\&Recursive generation of the Integrand-decomposition Formula @ any loop
Amplitude decomposition from the shape of residues
Residues' classification complementary to Landau's singularity
classification

『 Pheno applications

GoSam, Samurai, Ninja: multi-process automatic NLO calculations
main achievements:
Higgs production in association with jets and heavy-quarks at NLO

OutLoo(k/p)

©One-Loop
\&GoSam2.0 @ LHC
New integrand generator (5D-unitarity)
EW and massive particles
©a new horizon: Automating the integrand reduction analytically
$\Psi_{\text {Beyond One-Loop }}$
\& Combining Integrand Reduction \& Integration-by-parts
Master Integrals from Magnus exponential
\& $\mathrm{Pp}-->\mathrm{H}+2$ at NNLO
\&a driving question:
\&QFT finiteness: KLN-theorem @ the integrand level

xing-path with many subjects

actractive for a wide spectrum of people

Scattering

ATLAS

Scattering in $\mathcal{N}=4 \mathrm{sYM}$

Arkani-Hamed, Bourjaily, Cachazo, Trnka

Precision Calculations to fill the gap!

Electric lamps were not invented by improving candles T. Hänsch

