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Motivation
Identify a unique Mathematical framework for any Multi-Loop Amplitude

Simplify the calculations in High-Energy Physics

Computing the uncomputable

Discover hidden properties of Quantum Field Theories

Path
Scattering Amplitudes in QFT

Unitarity and Analyticity 

Poles and Residues

Amplitudes Decomposition

Unitarity-based methods and Cauchy’s Residue Theorem 

Multiloop Integrand Reduction and principles of Algebraic Geometry

Application: H+3jets and HtTj production at NLO

Application: beyond one-loop

Differential Equations for Feynman Integrals: Magnus Exponential

Conclusions
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3. How do human beings acquire knowledge?
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Origins

1. What is the major discovery of the mankind?
    The Fire

2. What is the major invention of the mankind?
    The Wheel

3. How do human beings acquire knowledge?
    By successive approximation

What Particle Physics has to do with that?



Origins
Focusing energy in one point

Energy from collisions

usefulness of circular shapes

Exponential function



Origins

...in practice

Particle Physics...
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We know (4) expands infinitely, and that we are able to regroup the real and imaginary terms.

e

ix

= 1 + ix +

�x

2

2!

+

�ix

3

3!

+

x

4

4!

+

ix

5

5!

+

�x

6

6!

+ · · ·

=

✓
1 +

�x

2

2!

+

x

4

4!

+

�x

6

6!

+

x

8

8!

+ · · ·
◆

+

✓
ix +

�ix

3

3!

+

ix

5

5!

+

�ix

7

7!

+

ix

9

9!

· · ·
◆

=

✓
1 +

�x

2

2!

+

x

4

4!

+

�x

6

6!

+

x

8

8!

+ · · ·
◆

+ i

✓
x +

�x

3

3!

+

x

5

5!

+

�x

7

7!

+

x

9

9!

· · ·
◆

(5)

By grouping the series for e

ix

in terms of real and imaginary parts, we can clearly see that it is

composed of two distinct taylor series that we are familiar with: the sine and cosine functions.
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Thus in the end we get Euler’s formula: e
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= cos(✓) + i sin(✓).
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294 Chapter 8 ! Residue Theory
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Figure 8.1 The domain D and contour C and the singular points z1, z2,. . . , zn in the
statement of Cauchy’s residue theorem.

expansion, we seek a method to calculate the residue from special information
about the nature of the singularity at z0.

Particle Physics...

...in theory



Perturbation Theory

Goal :: Discovery = Caos - Known

Tool :: Factorization Hypothesis =>  Observables = Non-Perturbative x Perturbative

Perturbative Approach

organize the knowledge in successive approximations
delaying our ignorance to higher-orders



Illustration of hadron-hadron collision:

PDFs Hard scattering Parton shower Hadronization
and decay

Observable (here: cross section) for hard scattering:

s µ
Z

df |A|2 ⌘
Z

ds

1

Anatomy of the Scattering Process



Scattering Matrix

5.4. SCATTERING MATRIX

5.4 Scattering Matrix

The elements of the scattering matrix are probability amplitudes for the transition from an
initial state i to a final state f under the influence of an interaction.
We have a time-dependent state vector | (t)i which describes the state of the system. The
initial state is

|�ii = lim
t!�1 | (t)i. (5.60)

It is an eigenstate of the free Hamiltonian. The scattering matrix element Sfi is the projection
of the state vector onto the final state h�f |. Using limt!1 | (t)i = U(1,�1)|�ii, we find

Sfi = lim
t!1h�f | (t)i

= h�f |S|�ii (5.61)

with the time evolution operator whose matrix elements read

Sfi = lim
t1!+1
t2!�1

h�f |U(t1, t2)|�ii. (5.62)

We conclude that

S = U(+1,�1)

=
1
X

n=0

1

n!
(�i)n

Z 1

�1
dt1 · · ·

Z 1

�1
dtnT (HI(t1) · · ·HI(tn)) . (5.63)

Note that this expression is unitary.
We can decompose the S-matrix as

Sfi = �fi + i(2⇡)4�(4)(pf � pi)Tfi (5.64)

where pf , pi denote the total momentum of final and inital state. The �(4)(pf � pi) encodes
four-momentum conservation. We abbreviate this as

S = 1+ iT (5.65)

which we interpret as the superposition of a non-interacting contribution (for example, two in-
coming particles which stay una↵ected) and a contribution containing interactions (for exam-
ple, the initial state could consist of two particles which interact and result in a multiparticle
final state).

When we calculate the scattering matrix elements Sfi = h�f |S|�ii, we have to deal with
the fact that h�f | and |�ii are eigenstates of the full theory.
By a nontrivial generalization of the arguments leading to the relation between the free
theory’s vacuum |0i and the interacting theory’s vacuum |⌦i, it follows that

Sfi = h�f |S|�ii
= h�0f |S|�0i i

�

�

connected diagrams
(5.66)
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5.6. SCATTERING CROSS SECTION

Application of the Feynman Rules

• Energy-momentum conservation at each vertex. This condition fixes all the momenta
in terms of external momenta.

• For closed loops (no external momenta), we get an energy-momentum integral,
R d4q

(2⇡)4
.

• Each closed fermion loop yields a factor (�1) which is due to the operator ordering in
the contraction. For example, the loop

x1x2

stands for a contraction

 ̄1 1 ̄2 2 = (�1)tr( 1 ̄2 2 ̄1)

= (�1)tr(iSF (x1 � x2) · iSF (x2 � x1)). (5.94)

• Graphs with a di↵erent ordering of vertices along a fermion line are topologically dif-
ferent and have to be added. For example, consider the following contributions to S(4)

which are not the same:

1 1 22

3 4 3 4

6=

5.6 Scattering Cross Section

So far, our observations and calculations do not give us observable quantities. In this section
we want to link the abstract S-matrix elements to observable quantities.
The transition rate for a transition from the initial state i to the final state f per unit time is

wfi =
|Sfi|2
T

(5.95)

with Sfi = �fi + i(2⇡)4�(4)(pf � pi)Mfi. In order to square Sfi, we have to think about how
to square a �-function. We write

[(2⇡)�(p0f � p0i )]
2 =

Z 1

�1
dt ei(p

0
i

�p0
f

)t2⇡�(p0f � p0i )

= T (2⇡)�(p0f � p0i ) (5.96)
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5.6. SCATTERING CROSS SECTION

Integrating Eq. (5.101), we can write this decay width as

�a!n =
1

2Ea
(2⇡)4

Z

d3p1
(2⇡)32E1

· · · d3pn
(2⇡)32En

�(4)(Pf � pa)|Mfa|2 (5.104)

where |Mfa|2 can be calculated using the Feynman rules. An apparent problem arises if we
consider Lorentz invariance: the factor 1

2E
a

is not Lorentz invariant! Hence �a!n does depend
on the reference frame. In fact, this is not a problem, but a reminiscent of the time dilation.
The decay rate obviously has to depend on the reference frame because, in general, every
frame measures time di↵erently. Consequently, when talking about “lifetime”, we mean the
lifetime in the particle’s rest frame where Ea = ma.

5.6.2 Scattering Cross Sections

The second process which is of great importance, is scattering with m = 2 initial state
particles. We are interested in the total scattering cross section �(a+b ! 1+2+ ...+n)
which is defined as

� =
#transitions per unit of time

#incoming particles per surface per time
=

wfi

flux
(5.105)

with the

flux =
#particles

volume
· |relative velocity|

=
1

V
|va � vb|. (5.106)

This yields

� =
1

4EaEb|va � vb|
(2⇡)4

Z

d3p1
(2⇡)32E1

· · · d3pn
(2⇡)32En

�(4)(Pf � Pi)|Mfi|2. (5.107)

We define the Møller function (quantities in the center of mass frame are denoted by a star
and we use p

⇤
a = �p

⇤
b)

F = EaEb|va � vb|

= EaEb

�

�

�

�

pa

Ea
� pb

Eb

�

�

�

�

= E⇤
aE

⇤
b

�

�

�

�

p

⇤
a

E⇤
a

� p

⇤
b

E⇤
b

�

�

�

�

= (E⇤
a + E⇤

b )|p⇤
a|

= (E⇤
a + E⇤

b )
p

(E⇤
a)

2 �m2
a

=
q

(pa · pb)2 �m2
am

2
b . (5.108)

The last step can easily be verified by using energy-momentum conservation. When we go
from the second to the third line, we use that the whole expression is Lorentz invariant. This
yields a manifestly Lorentz invariant expression for the cross section:

� =
1

4
q

(pa · pb)2 �m2
am

2
b

(2⇡)4
Z

d3p1
(2⇡)32E1

· · · d3pn
(2⇡)32En

�(4)(Pf � Pi)|Mfi|2. (5.109)
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1.2. BASICS OF QED

Since p2 = m2 = 0, we have:

∆γµν (p, n) pµ = 0 (1.12)

∆γµν (p, n) nµ = 0 (1.13)

Thus, only 2 degrees of freedom propagate (transverse ones in the nµ + pµ restframe). A
usual choice is n2 = 0, λ = 0 (light cone gauge). The price we pay by choosing this gauge
instead of a covariant one is that the propagator looks more complicated and the integral
over pµ diverges when pµ becomes parallel to nµ. In this gauge

∆γµν (p, n) =
i

p2
dµν(p, n) (1.14)

with

dµν (p, n) = −gµν +
pµnν + nµpν

p · n
=
∑

λ=1,2

ε(λ)
µ (p) ε(λ)

ν (p)∗ . (1.15)

Some words on Coloumb gauge.

Feynman rules in covariant Feynman gauge

In the Feynman gauge the we have the following Feynman rules:

µµ ν

p

p

jj

= ∆γµν (p) = −igµν

p2

= ∆j(p) = i /p+m

p2−m2
j

= Γµ
j fj f̄j

= −iej eγµ

• outgoing fermion: ū (p) • outgoing antifermion: v (p)

• incoming fermion: u (p) • incoming antifermion: v̄ (p)

• outgoing photon: ε(λ)
µ (p)∗ • incoming photon: ε(λ)

µ (p) .

The cross section

The cross section is given by

σ =
1

2s

∫
dφn (p1, . . . , pn;Q)

1

S

∑

spin

|Mn|2 , (1.16)

where Q is the total incoming momentum, (s = Q2) and

dφn = (2π)4δd



Qµ −
n∑

j=1

pµ
j




n∏

j=1

ddpj

(2π)d−1
δ+
(
p2

j − m2
j

)

is the phase space in d = 4 − 2ε dimensions (in reality ε → 0 such that d = 4, but we
allow d #= 0 for later purposes). The index + of the δ-function means that we consider only
positive solutions E = +

√
m2 + )p2, in other words

δ+
(
p2

j − m2
j

)
= δ

(
p2

j − m2
j

)
θ (E) ,

4
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where θ (E) is the Heaviside step-function. The amplitude iMn is obtained from all possible
Feynman graphs and S−1 comes from averaging for incoming (spin) states. One can obtain∑

|Mn|2 directly from the so called “cut” graphs following the Cutkosky rules. If a matrix
element is given by the sum over all graphs G,

1

n

GiM =
∑

G

then the matrix element squared is given by the sum over all possible squared graph and
over all possible cuts of these graphs:

1

n

G
∑

|Mn|2 =
∑

cuts, G G̃

cut

The Feynman rules for the cut graphs are the usual ones with the following additional
rules:

1. the sign of explicit factors of i =
√
−1 and directions of fermionic arrows and those

of all momenta are reversed in G̃ as compared to G.

2. We do not integrate over the loop momentum of initial-state momenta,

3. A cut line j in the initial state means a factor of

• /p + mj if j is a fermion,

• /p − mj if j is a antifermion,

• −gµν if j is a (massless) gauge boson.

In the final state the corresponding factors are

•
(
/p ± mj

)
2πδ+

(
p2

j − m2
j

)
if j is a fermion/antifermion,

• −gµν 2π δ+
(
p2

j

)
if (massless) gauge boson.

The δ+ distributions express the on mass-shell conditions. These convert an integral
over a loop momentum into the element of a one-particle phase-space measure.

Example: e+e− −→ µ+µ−

We consider as a very easy application of the Cutkosky rules the reaction e+e− → µ+µ−.
At the amplitude level there is only one Feynman graph that contributes at lowest order to
this reaction:

5
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The δ+ distributions express the on mass-shell conditions. These convert an integral
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tree-graphs with (n+1)-partons
soft/collinear divergences

virtual-graphs with n-partons
divergences from loop-integration

extracting IR-singularities from both and combining them
phase-space slicing, subtractions, dipoles, antennas

• Perturbative Approach: improving the theoretical accuracy by including higher-order corrections
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Leading Order (LO) Next to Leading Order (NLO) NN . . .LO

• the importance of loop-diagrams:

- improving accuracy of known-physics processes

- key to access new-physics (heavier particles circulating the loops)
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• NLO Building-Blocks

! tree-graphs with n+1 partons

)( virtual graphs with n partons → Iµ!"...=
Z
dD!

!µ!!!" . . .

D1D2 . . .

! Subtraction terms

• More particles→ many scales→ lenghty analytic expressions

• Integrals are complicated and process specific

• Standard Passarino-Veltman reduction in terms of scalar integrals requires the solution of systems
of equations:

- large intermediate expressions

- spurious singularities
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Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 60

Figure 43. Schematic cartoon of a 2 → 2 hard scattering event.

The cutoff, pTmin, is the main free parameter of the model and basically corresponds
to an inverse colour screening distance. A tuning of the PYTHIA underlying event

parameters (Tune A) basically succeeds in describing most of the global event properties

in events at the Tevatron. With the new version of PYTHIA (version 6.4) [85, 16], a

new model for the underlying event is available, similar in spirit to the old multiple

parton interaction model, but with a more sophisticated treatment of colour, flavour

and momentum correlations in the remnants.

5.3. Inclusive jet production

It is useful to consider the measurement of inclusive jet production at the Tevatron as

(1) it probes the highest transverse momentum range accessible at the Tevatron, (2)

it has a large impact on global pdf analyses, and (3) many of the subtleties regarding
measurements with jets in the final state and the use of jet algorithms come into play.

As shown in Figure 43, a dijet event at a hadron-hadron collider consists of a hard

collision of two incoming partons (with possible gluon radiation from both the incoming

and outgoing legs) along with softer interactions from the remaining partons in the

colliding hadrons (“the underlying event energy”).

The inclusive jet cross section measured by the CDF Collaboration in Run 2 is
shown in Figure 44, as a function of the jet transverse momentum [130]. Due to the

higher statistics compared to Run 1, and the higher centre-of-mass energy, the reach in

transverse momentum has increased by approximately 150 GeV. The measurement uses

the midpoint cone algorithm with a cone radius of 0.7. As discussed in Section 3.6, the

midpoint algorithm places additional seeds (directions for jet cones) between stable cones

having a separation of less than twice the size of the clustering cones. The midpoint
algorithm uses four-vector kinematics for clustering individual partons, particles or

energies in calorimeter towers, and jets are described using rapidity (y) and transverse

Needs of NLO Corrections

• Front-line in Theoretical Particle Physics

@ LHC Phenomenology

H H H

H

Signals:

• Decays: H →VV (V = !,W,Z)
• PP→ H+0,1,2 jets (Gluon Fusion)

• PP→ H+2 jets (Weak Boson Fusion)

• PP→ H+ tt̄

• PP→ H+W,Z

Backgrounds:

• PP→ tt̄+0,1,2 jets
• PP→VV +0,1,2 jets
• PP→V +0,1,2,3 jets
• PP→VVV +0,1,2,3 jets
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@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism

- Beyond the Standard Model (SuSy, Dark Matter, . . . )

- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory
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@ LHC Phenomenology

@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism

- Beyond the Standard Model (SuSy, Dark Matter, . . . )

- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

- Exploring the Finiteness of Supergravity

Gravity Gauge Theory Gauge Theory
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8.4 Renormalisation d’une théorie. 69

De même, l’intéraction de l’électron avec le vide engendre autour de l’électron un nuage de paires
électron-positron virtuelles, qui « modifient » la charge de l’électron de ⇥e. La charge réelle mesurée
est :

ee = e + ⇥e. (8.43)

Les lagrangiens nus ne nous donnent pas les valeurs expérimentales. On rajoute donc des contre-
termes, contenant les valeur ⇥m et ⇥e aux lagrangiens nus, pour qu’ils deviennent « habillés »
et qu’ils contiennent les valeurs expérimentales me et ee, On contraint les constantes des contres
termes afin d’éliminer les divergences ultraviolettes. On ajoutera des diagrammes et des règles de
Feynman associés à ces contre-termes. Ici, le but n’est pas de faire un développement complet de
la renormalisation, mais d’expliquer le calcul à une boucle et le traitement des divergences. Dans
l’étude du processus ee ⇥ ��, on fera la renormalisation de la théorie QED scalaire.

8.4.3 Renormalisation de la QED

D’après les deux propositions 8.2.3 et 8.2.4, il y a seulement quatre diagrammes connexes
et irréductibles divergents en QED. Ils sont donnés dans la figure 8.1. Le premier diagramme
correspond à l’énergie propre du photon, le deuxième à l’énergie propre de l’électron, le troisième
à la correction du vertex et la quatrième à la di⌅usion photon-photon.

µ ν k
p2

p3

p p p p
p2

p1

p4

p1

Fig. 8.1 – Diagrammes divergents en QED

Considérons le diagramme de l’énergie propre du photon d’amplitude P (p). Le développement
de cette amplitude autour de l’impulsion nulle du photon externe :

P (p) = �e2

�
dnQ

tr (�µ ⇤q1�
⇥ ⇤q2)

D2
1D

2
2

= P (0) + pµP1µ +
pµp⇥

2
P2µ⇥ + PR(p), (8.44)

fait introduire quatre constantes qui sont égales à des dérivées premières et secondes. Par comptage
de puissance, comme une dérivée apporte une puissance supplémentaire au dénominateur, alors
les tenseurs P (0), P1µ et P2µ⇥ sont à priori infinies alors que la constante PR(p) est finie : c’est
l’intégrale renormalisée. Cependant l’invariance relativiste entrâıne que le développement ne dépend
que de p2 donc Pµ

1 .p1µ = 0 et pµp⇥

2 P2µ⇥ = p2P2. De même, pour le diagramme de l’énergie propre
de l’électron ⇥(p), le développement limité de l’amplitude autour de la valeur p0 de l’électron :

⇥(p) = �e2

�
dnQ

⌅P�µ ⇤Q1�µP ⇧
D2

1D
2
2

= ⇥(p0) + ⇥1(p0) (⇤p� ⇤p0) + ⇥R(p), (8.45)

fait intervenir trois constantes dont ⇥(p0) et ⇥1(p0) sont infinies par comptage de puissance et
⇥R(p) correspond à l’intégrale renormalisée. Enfin, si on note �(p1, p2, k)µ l’amplitude du vertex
et ⇤(p1, p2, p3, p4) l’amplitude de la di⌅usion photon-photon alors ils s’écrivent :

�(p1, p2, k)µ = �(p1, p2, 0)�µ + �R(p1, p2, k)µ (8.46)
⇤(p1, p2, p3, p4) = ⇤0 + ⇤R(p1, p2, p3, p4), (8.47)

où les constantes �(p1, p2, 0) et ⇤0 sont infinies alors que le tenseur �R(p1, p2, k)µ ainsi que la
constante ⇤R(p1, p2, p3, p4) correspondent au vertex et à l’amplitude photon-photon renormalisés.

Nous avons donc six constantes infinies P (0), P2,⇥(p0), ⇥1(p0),�(p1, p2, 0) et ⇤0. À partir des
trois principes physiques, on peut faire disparâıtre les « infinies » de ces constantes. Les trois prin-
cipes physiques sont : la renormalisation de la charge, la renormalisation de la masse et l’invariance

feynman diagrams complexity…

consider

!

Passarino-Veltmann

reduction

feynman diagrams complexity…

consider

!

Passarino-Veltmann

reduction

All-plus photon helicity-amplitude = -8 + O(ε)

Feynman Diagrams Complexity
four photon amplitude
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diagram cancellations which remove four powers of loop momentum in the numerator for

N = 4 and two powers for N = 1. These cancellations in turn allow only box integrals

to appear in N = 4 and box, triangle and bubble integrals in N = 1 [17, 21]. Thus, the

main hurdle in computing the RHS of (2.4.1) comes from the non-supersymmetric part

of it which is nevertheless still easier to compute than the LHS as a scalar cannot prop-

agate spin information around the loop. We conclude this section by mentioning other

multiplets found in supersymmetric theories, the N = 2 vector multiplet (1, 2, 2, 2, 1),

the N = 2 hyper multiplet (0, 2, 4, 2, 0) and the N = 1 vector multiplet (1, 1, 0, 1, 1).

2.5 Modern Methods

In an era in which loop calculations are vital to distinguish new physics from the known

background, tree-level scattering amplitudes ought to be a relatively feasible calcula-

tion to perform. The usual approach is to follow the recipe as given by the Feynman

rules. This set of rules, although mechanical, become rather inefficient as the number

of particles increase, for the number of diagrams increase factorially as the table below

shows. Furthermore, individual diagrams are rich in complicated tensor structures and

n 2 3 4 5 6 7 8
# of diagrams 4 25 220 2485 34300 559405 10525900

Table 2.1: The number of Feynman diagrams contributing to the scattering process gg →
n g. Extracted from [71].

are not independently gauge invariant due to their being off-shell: profileration of terms

throughout the calculation becomes exceedingly cumbersome as Figure 2.2 shows. Al-

though scarcely distinguishable, the black scribbles are actually dot products of on-shell

gluons momenta kµ with the gluon polarization vectors εµ.

An alternative and more efficient approach, based on Feynman rules, are Berends-

Giele recursion relations [66], which make use of recursive methods that connect together

off-shell currents. The simplification, in particular in massless theories, arises from

employing colour ordering and spinor helicity formalism which we described earlier in

this chapter. Although the use of gauge invariance and on-shell conditions keep off-

shell quantities to a minimum, the calculation still suffers from rather long expressions

which render inputing numerical quantities a quite strenuous task. In recent times6, two

related methods to perform tree-level calculation appeared. We describe them below.

6We mean geologically speaking.

gg --> gg...gn+2 gluon tree-amplitude
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Figure 2.2: The five-gluon tree level amplitude computed in a Feynman fashion.

2.5.1 The CSW construction

In an influential paper, [12], a novel diagrammatic approach stemmed from an insight

which relates the perturbative expansion of N = 4 super Yang-Mills theory to D-

instanton expansion in the topological B model in super twistor space7 CP 3|4 [10]. A

experimental investigation of YM amplitudes in twistor space yielded the interesting

fact that MHV amplitudes localise on complex lines in twistor space. In turn, lines

in twistor space map to points in space-time. This suggested to use MHV vertices as

building blocks in the following manner

1. Draw all possible MHV diagrams using MHV amplitudes as vertices.

2. Connect all the MHV vertices, helicities − to +, by off-shell scalar propagators
i

P 2 assuming conservation of momentum P flowing between the vertices (opposite

helicities are connected by the propagator).

3. Assign a holomorphic spinor |P !
i 〉 = |Pi|κ] to each legs attached to a propagator,

where κ is an arbitrary spinor fixed for all diagrams. A similar off-shell continua-

tion is viable also for anti-holomorphic spinor variables.

4. Sum all the contributions of all MHV diagrams8.

7For the interested reader, a light introduction to twistor space and the fundamental relation between
MHV amplitudes and lines in twistor space are given in Appendix E. For a thorough introduction we
refer to the original work referenced above.

8The κ-dependence disappear after summing over all the possible MHV diagrams.
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∑

±

± ∓

1
P 2

ij

l̂
j

i i − 1

j + 1

k̂

Figure 2.5: A diagrammatic representation of (2.5.11).

rules set above, the basic CSW construction consists of a number of MHV vertices

continued off-shell connected by some propagators. In view of the shifts (2.5.6), the

anti-holomorphic spinor of the propagator’s momentum becomes (λ̃P )α̇ = (P̂ij)αα̇κα

with κ an arbitrary spinor. Since P̂ij = Pij + zλkλ̃l, choosing κ = λk will render λ̃P

independent of z and so will be all the MHV vertices connected to it. The only vertex

remaining dependent on z is precisely the one containing the negative-helicity gluon k.

In a googly MHV amplitude, the shifted spinor λ̃k + zλ̃l will appear in the denominator

thus vanishing as z → ∞.

2.5.4 The MHV Amplitude as a Solution of the BCF Recursion Re-

lation

Following [23], in this section we show how the simple MHV tree-level amplitude which

we recall is of the form

An(1−, 2+, . . . ,m−, . . . , n+) = ign−2 〈1m〉4

〈12〉 · · · 〈(n − 1)n〉〈n1〉
, (2.5.14)

satisfies (2.5.11).

Following the shift (2.5.6), we choose to shift gluons 1 and 2

λ̃1 → λ̃1 − zλ̃2 , λ2 → λ2 + zλ1 . (2.5.15)

If we take m > 3 there is only one non-vanishing contribution to (2.5.11), namely

i = 2 and j = 3, a pictorial representation of which is provided in Figure 2.6. For m ≤ 3

the analysis is similar although with a different partition of momenta.

The shifted momentum flowing through our partition becomes P̂23 ≡ P̂ so that,

according to (2.5.9), P̂ 2
23(z) vanishes when z = P 2

23/〈1|P |2]. Assuming that the Parke-

All-plus helicity = 0
Single-minus helicity = 0

Two-minus =>

5-gluon case (n=3)

Feynman Diagrams Complexity



Looking for Simplicity behind 
Complexity?

Process-Independent Strategy

Properties of the S-Matrix

Process-Independent Strategy

• a general mathematical property: Analyticity of Scattering-Amplitudes

! Scattering Amplitudes are determined by their poles and branch-cuts

• a general physical property: Unitarity of Scattering-Amplitudes

! The residues at poles and branch-points are products of simpler amplitudes,
with lower number of particles and/or less loops

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 14

Multi-pole expansion of Scattering Amplitudes
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Basis: {i j k}

Scalar product/Projection:
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i 

ay = a.j 

az = a.k



Projections :: On-Shell Cut-Conditions
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i.e. the transition amplitudes of state |ψ 〉 to states |ψn 〉. If we now insert Eq. (3.23) into
Eq. (3.21)

|ψ 〉 =
∑

n

|ψn 〉 〈ψn|
︸ ︷︷ ︸

Pn

ψ 〉 , (3.24)

we see that for a complete set of orthonormal basis vectors the orthogonal projectors
satisfy the following completeness relation

∑

n

Pn =
∑

n

|ψn 〉 〈ψn| = 1 . (3.25)

A projection operator Pn acting on an arbitrary state |ψ 〉 will thus project the state
to the state |ψn 〉 with a probability of | 〈ψn |ψ 〉 |2. Summarizing, the Pn satisfy

PnPm = δnm and P 2
n = Pn . (3.26)

Physically, this represents the class of projective measurements such as the measure-
ment of the polarization of light.

Example: Polarization Filter
Consider a photon, linearly polarized along the 45◦-plane (with respect to the horizontal
plane). We can then describe its polarization by a state vector

|ψ 〉 =
1√
2

( |H 〉 + |V 〉 ) , (3.27)

where |H 〉 and |V 〉 are the basis vectors of a 2–dimensional Hilbert space corresponding
to horizontal and vertical polarization respectively. If we perform a measurement of
the polarization by sending the photon through a polarization filter, e.g. in horizontal
orientation, we get the measurement outcome by calculating the expectation value of the
horizontal projector |H 〉 〈H |. Lets first calculate the projection onto |H 〉

|H 〉 〈H |ψ 〉 =
1√
2



 |H 〉 〈H |H 〉
︸ ︷︷ ︸

1

+ |H 〉 〈H |V 〉
︸ ︷︷ ︸

0



 =
1√
2
|H 〉 , (3.28)

then we apply 〈ψ | onto the left side to obtain the expectation value

〈ψ |H 〉 〈H |ψ 〉 =
1

2



 〈H | H 〉
︸ ︷︷ ︸

1

+ 〈V | H 〉
︸ ︷︷ ︸

0



 =
1

2
. (3.29)

It’s interesting to note that the expectation value of the projector is exactly the squared
transition amplitude 〈H |ψ 〉 – the transition probability. We conclude that the proba-
bility for the photon to pass the polarization filter is 1

2
.

i (-i) = 1

the richness of factorization
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1. Cauchy’s Residue Theorem

1
2πi

∮ An(z)
z

= An(∞) = An(0) +
∑

poles

ResAn(z) (5)

If An(∞) = 0, then one obtaines the relation

An(0) = −
∑

poles

ResAn(z) , (6)

which can be interpreted as a recurrence relation for
An(0) ≡ An.

The recurrence relation for An hence reads [1–3]

An(ph1
1 , . . . , phn

n ) =
∑

partition

∑

h

AL(pr, . . . , p̂i, . . . , ps,−P̂ h
r:s)

× 1
P 2

AR(P̂ h
r:s, ps+1, . . . , p̂j , . . . , pr−1) . (7)

The amplitude is given as a sum of products of lower-
point amplitudes, evaluated on shell, but for complex val-
ues of the shifted momenta, as in Fig.1,

An =
∑

partitions

∑

h

r

s

P̂ r + 1

s − 1

î ĵAL AR

FIG. 1: Tree-level recurrence-relation

The first sum is over the partitions of the set
{1, 2, . . . , n} into two consecutive subsets (with minimum
3 elements), where the labels of the shifted momenta, i
and j, belong to distinct subsets. The second sum is over
the helicity h of an on-shell particle propagating between
the two amplitudes, carrying complex momentum, P̂ ,

P̂µ
r:s = Pµ

r:s +
z

2
〈j|γµ|i] , (8)

with Pr:s = pr + . . . ps. The value of z can be found by
imposing the on-shell condition, P̂ 2

r:s = 0, that implies,

z = − P 2
r:s

〈j|Pr:s|i]
. (9)

We stress that the recurrence relation (7) is univocally
characterized by the complex momenta fulfilling the fac-
torization and the on-shell constraints given in (1,8,9).
The momentum-flow in the recursion is pictorially repre-
sented in Fig.2, where we have defined the vectors,

Kµ
1 = Pµ

r:s − p̂µ
i , (10)

Kµ
2 = −Pµ

r:s − p̂µ
j . (11)

We finally remark that the role of i and j in (1,8,9)
can be, in principle, exchanged, yielding an alternative,
yet equivalent, solution of the recurrence.

III. QUADRUPLE-CUT

In this section we focus on the solution of the
quadruple-cut [4] of a box-like diagram c[i|K1|K2|j], rep-
resented in Fig.3, with arbitraty K1 and K2, and with
two adjacent massless legs, i and j.

The cut-constrains are given by the on-shell conditions,

#2
1 = 0 = (#3 + Pr:s)2 , (12)

#2
2 = 0 = (#3 − pj)2 , (13)

#2
3 = 0 , (14)

#2
4 = 0 = (#3 + pi)2 . (15)

Since #3 propagates among the massless legs i and j,
it admits the following decomposition in terms of the
massless momenta pi, pj, 〈i|γ|j], 〈j|γ|i],

#µ
3 = α pµ

i + β pµ
j +

ξ

2
〈i|γµ|j] +

ζ

2
〈j|γµ|i] . (16)

The components α, β, ξ, and ζ are frozen by the cut-
conditions: Eq.(13) sets α = 0; Eq.(15) sets β = 0;
Eq.(14) demands either ξ = 0 or ζ = 0. If we choose
ξ = 0, ζ &= 0, then

#3 =
ζ

2
〈j|γ|i] (17)

where the value of ζ is frozen by Eq.(12) to be

ζ = − P 2
r:s

〈j|Pr:s|i]
. (18)

Given the solution of the quaruple-cut condition just
outlined, it easy to identify the shifted momenta p̂i and
p̂j in (1) with #4 and #2 respectively, while #3 corresponds
to the polarization vector parametrizing the displacement
in the shift. The correspondence among the solutions of
tree-level recursion and the quadruple-cut is suggestively
depicted in Fig.4.

In the alternative solution of the four on-shell condi-
tions, represented by the choice ξ &= 0, ζ = 0, the roles
of i and j would be reversed - in correspondence to the
flexibility of the solutions of the tree-level recurrence.

We remark that the diagrammatic relation in Fig.4 in-
volves only the momentum-variables on each side of the
P̂ -channel cut, and it does not require i and j to be
necessary consecutive color-ordered legs: in fact, for the
construction of the BCFW-recurrence, the shifted legs i

K1

î

P̂
K2

ĵ

FIG. 2: Momentum flow in the tree-level recursion.
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Given the solution of the quaruple-cut condition just
outlined, it easy to identify the shifted momenta p̂i and
p̂j in (1) with "4 and "2 respectively, while "3 corresponds
to the polarization vector parametrizing the displacement
in the shift. The correspondence among the solutions of
tree-level recursion and the quadruple-cut is suggestively
depicted in Fig.4.

In the alternative solution of the four on-shell condi-
tions, represented by the choice ξ $= 0, ζ = 0, the roles
of i and j would be reversed - in correspondence to the
flexibility of the solutions of the tree-level recurrence.

We remark that the diagrammatic relation in Fig.4 in-
volves only the momentum-variables on each side of the
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torization and the on-shell constraints given in (1,6,7).
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2 = −Pµ

r:s − p̂µ
j . (9)

We finally remark that the role of i and j in (1,6,7)
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BCFW Recurrence Relation

BCFW Recurrence Relation

Roiban, Spradlin, Volovich (2004)

Britto, Cachazo, Feng [hep-th/0412308] ...

...& Witten [hep-th/0501052]

Consider A(1,2, . . . ,n), and pick up any
two special legs, say 1 and n.

1

2

k−1
k k+1

k+2

n−1
n

• Analytic continuation, A → A(z):

p
µ
1

→ p
µ
1
(z) ≡ p

µ
1
+ z〈1|!µ|n]

pµn → pµn(z) ≡ pµn− z〈1|!µ|n]

If n ∈ {i, . . . , j} && 1 /∈ {i, . . . , j}

⇒ P2i j ≡ (pi+ . . .+ p j)2→ P2i j(z) = P2i j− z〈1|Pi j/ |n]

∴ the propagator develops a simple pole@ z= zi j ≡
P2i j

〈1|Pi j|n]
.
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î ĵAL AR

FIG. 1: Tree-level recurrence-relation

The first sum is over the partitions of the set
{1, 2, . . . , n} into two consecutive subsets (with minimum
3 elements), where the labels of the shifted momenta, i
and j, belong to distinct subsets. The second sum is over
the helicity h of an on-shell particle propagating between
the two amplitudes, carrying complex momentum, P̂ ,

P̂µ
r:s = Pµ

r:s +
z

2
〈j|γµ|i] , (6)

with Pr:s = pr + . . . ps. The value of z can be found by
imposing the on-shell condition, P̂ 2

r:s = 0, that implies,

z = − P 2
r:s

〈j|Pr:s|i]
. (7)

We stress that the recurrence relation (5) is univocally
characterized by the complex momenta fulfilling the fac-
torization and the on-shell constraints given in (1,6,7).
The momentum-flow in the recursion is pictorially repre-
sented in Fig.2, where we have defined the vectors,

Kµ
1 = Pµ

r:s − p̂µ
i , (8)

Kµ
2 = −Pµ

r:s − p̂µ
j . (9)

We finally remark that the role of i and j in (1,6,7)
can be, in principle, exchanged, yielding an alternative,
yet equivalent, solution of the recurrence.

K1

î
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In this section we focus on the solution of the
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Eq.(12) demands either ξ = 0 or ζ = 0. If we choose
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where the value of ζ is frozen by Eq.(10) to be
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Given the solution of the quaruple-cut condition just
outlined, it easy to identify the shifted momenta p̂i and
p̂j in (1) with "4 and "2 respectively, while "3 corresponds
to the polarization vector parametrizing the displacement
in the shift. The correspondence among the solutions of
tree-level recursion and the quadruple-cut is suggestively
depicted in Fig.4.

In the alternative solution of the four on-shell condi-
tions, represented by the choice ξ $= 0, ζ = 0, the roles
of i and j would be reversed - in correspondence to the
flexibility of the solutions of the tree-level recurrence.
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1. Cauchy’s Residue Theorem

1
2πi
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z

= An(∞) = An(0) +
∑

poles

ResAn(z) (5)

If An(∞) = 0, then one obtaines the relation

An(0) = −
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which can be interpreted as a recurrence relation for
An(0) ≡ An.
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ĵ

FIG. 2: Momentum flow in the tree-level recursion.

III. QUADRUPLE-CUT

In this section we focus on the solution of the
quadruple-cut [4] of a box-like diagram c[i|K1|K2|j], rep-
resented in Fig.3, with arbitraty K1 and K2, and with
two adjacent massless legs, i and j.
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The cut-constrains are given by the on-shell conditions,

#2
1 = 0 = (#3 + Pr:s)2 , (12)

#2
2 = 0 = (#3 − pj)2 , (13)

#2
3 = 0 , (14)

#2
4 = 0 = (#3 + pi)2 . (15)

Since #3 propagates among the massless legs i and j,
it admits the following decomposition in terms of the
massless momenta pi, pj, 〈i|γ|j], 〈j|γ|i],
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i + β pµ
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2
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2
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The components α, β, ξ, and ζ are frozen by the cut-
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2
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outlined, it easy to identify the shifted momenta p̂i and
p̂j in (1) with #4 and #2 respectively, while #3 corresponds

Britto, Cachazo, Feng, Witten
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One-Loop Scattering Amplitudes 
One-Loop Scattering Amplitudes

• n-particle Scattering: 1+2→ 3+4+ . . .+n

• Reduction to a Scalar-Integral Basis Passarino-Veltman

1-Loop = !
102−103

Z
dD!

!µ!"!# . . .

D1D2 . . .Dn

= c4 + c3 + c2 + c1

• Known: Master Integrals

=
Z
dD!

1

D1D2D3D4
, =

Z
dD!

1

D1D2D3
, =

Z
dD!

1

D1D2
, =

Z
dD!

1

D1

• Unknowns: ci are rational functions of external kinematic invariants
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4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`
1

d4`
2

�(4)
⇣
`
1

+ `
2

� P
12

⌘
�(+)

⇣
`2
1

�m2

1

⌘
�(+)

⇣
`2
2

�m2

2

⌘
(4.5)

– 6 –

Cutting Rules
Cutting Rule

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P2
12
-channel

!("1) =

1

2

!1

!2

!("2) =

1

2

!1

!2

!("1)+!("2) =
A
tree

1

2

!1

!2
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Unitarity & Cutting Rules
Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)
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The Strategy: Generalised Unitarity
Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)

Method ! Matching the cuts of any amplitudes onto the cuts of Master Integrals

Advantage 1 ! iterative construction: one-loop amplitudes by sewing tree-level amplitudes

Advantage 2 ! simplified input: tree-amplitudes vs Feynman graphs
tree-amplitudes are gauge-invariant on-shell quantities,

corresponding to sums of off-shell Feynman diagrams.
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The more you cut, the more you loose, the simpler it gets

 Multiple-cut as projectors

The Strategy: Generalised Unitarity

• Multiple-cuts as optical filters

Replacing the original amplitude with simpler integrals fulfilling the same algebraic decomposition

= c4 Britto, Cachazo, Feng

= c4 + c3

Bern, Dixon, Dunbar, Kosower

P.M.

Forde

Bjerrum-Bohr, Dunbar, Perkins

= c4 + c3 + c2

Bern, Dixon, Dunbar, Kosower

Brandhuber, McNamara, Spence, Travaglini

Britto, Buchbinder, Cachazo, Feng, ⊕ P.M.

Anastasiou, Britto, Feng, Kunszt, P.M.

Forde; Badger

= c4 + c3 + c2 + c1 Glover, Williams

Britto, Feng
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Cut-Conditions
Complex Solutions of the Cut-conditons

• Loop momentum decomposition

q2 = p2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !
+
µ + x4 !

−
µ

• under Multiple On-shellness Conditions :

- the loop-momentum becomes complex ;

- some of its components (if not all) are frozen;

- the left over free components are integration-variable

• Closer look at the Integrand Structure

Numerator and denominator of the n-particle cut-integrand are mutivariate-polynomials in (4− n)
complex-variables:

Cutn =
I

dx1 . . .dx4−n
P(x1, . . . ,x4−n)
Q(x1, . . . ,x4−n)

! Contour Integrals of Rational Functions ∼ Integrals by partial fractioning

! Analytic functions: Multi-pole Decomposition (think of CMB and Harmonic Decomposition)

• Singularity Classification

Master Integrals characterized by the location of the poles.
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Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)

Method ! Matching the cuts of any amplitudes onto the cuts of Master Integrals

Advantage 1 ! iterative construction: one-loop amplitudes by sewing tree-level amplitudes

Advantage 2 ! simplified input: tree-amplitudes vs Feynman graphs
tree-amplitudes are gauge-invariant on-shell quantities,

corresponding to sums of off-shell Feynman diagrams.
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On-shell condition
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On-shell condition

To integrate or not to integrate: 
that is the question

Cut-Conditions



Cut-Integration
by 

Cauchy’s residue theorem
(and its generalization)
294 Chapter 8 ! Residue Theory

x

y

z1

z2 z3

C3
C2

C1

C

D

. . .

zn – 1Cn – 1

Cn

zn

Figure 8.1 The domain D and contour C and the singular points z1, z2,. . . , zn in the
statement of Cauchy’s residue theorem.

expansion, we seek a method to calculate the residue from special information
about the nature of the singularity at z0.

To integrate...



Quadruple Cuts

Britto, Cachazo, Feng (2004)

The discontinuity across the leading singularity, via quadruple cuts, is unique, and corresponds to
the coefficient of the master box

K1 K4

K3K2

A1

A2

A4

A3

= c[K1|K2|K3|K4] ×

K1 K4

K3K2

• 4PLE-cut integrand: I4(!) = Atree
1

×Atree
2

×Atree
3

×Atree
4

• Momentum-decomposition ansatz: !µ = !1 pµ+!2 qµ+!3
〈q|"µ|p]
2

+!4
〈p|"µ|q]
2

• Cut-conditions: D1 = D2 = D3 = D4 = 0 ⇔ coefficient constraints

• Solutions: !±µ = !1 pµ+!2 qµ+!±
3

〈q|"µ|p]
2

+!±
4

〈p|"µ|q]
2

c[K1|K2|K3|K4] =
I4(!+)+ I4(!−)

2
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Triple-Cut

Forde (2008)

K3

−K2

K1

! = c[K1|K2|K3] × K3

−K2

K1

!

• 3ple-cut integrand: I3(!) = A1(!)×A2(!)×A3(!)

• Loop-Momentum decomposition:

!µ = !1 pµ+!2 qµ+ t
〈q|"µ|p]
2

+
!1!2

t

〈p|"µ|q]
2

pµ =
K
µ

1
− (K2

1
/")Kµ

2

1− (K2
1
K2
2
/")

, qµ =
K
µ

2
− (K2

2
/")Kµ

1

1− (K2
1
K2
2
/")

, q2 = p2 = 0 ,

• Cut-conditions: D1 = D2 = D3 = 0 ⇔ coefficient constraints

!1 =
K2
1
("−K2

2
)

"2−K2
1
K2
2

, !2 =
K2
2
("−K2

1
)

"2−K2
1
K2
2

, "= (K1 ·K2)±
√
# , #= (K1 ·K2)2+K2

1
K2
2

.

c[K1,K2,K3] =
Rest=0

{
I3(!+)+ I3(!−)

}

2
=

Rest=0 I3(!±)+Rest=$I3(!±)
2
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1
)
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Novel Double-Cut Phase-Space

!= AL AR =
Z
d4" Atree

L (!0) × A tree
R (!0) , !µ

0
=
K2

2

〈!|#µ|!]
〈!|K|!]

• Change of Variables with special p and q :

i) q2 = p2 = 0

ii) Kµ≡ pµ+qµ , K2 ≡ 2p ·q= 2p ·K = 2q ·K

iii) |!〉 ≡ |p〉+ z|q〉 & |!] ≡ |p]+ z̄|q]

⇔ !µ
0

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|#µ|p]
2

+ z̄
〈p|#µ|q]
2

)

• Simplified parametrization of the Phase-Space

Z
d4"= −K2

I

z̄=z∗
dz

Z
dz̄

Z
t dt

(1+ zz̄)
$

(
t− 1

(1+ zz̄)

)
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where pµ and qµ are two massless momenta with the
requirements,

pµ + qµ = Kµ ,

p2 = q2 = 0 ,

2 p · q = 2 p · K = 2 q · K ⇤ K2 ; (4)

the vectors �µ
+ and �µ

� are orthogonal to both pµ and
qµ, with the following properties 1,

�2+ = �2� = 0 = �± · p = �± · q , (5)
2 �+ · �� = �K2 . (6)

The parameter ⇤ is the pseudo-threshold,

⇤ =
K2 + m2

1 �m2
2 �

⇤
⇥(K2,m2

1,m
2
2)

2K2
, (7)

with the Källen function defined as,

⇥(K2,m2
1,m

2
2) = (K2)2 + (m2

1)
2 + (m2

2)
2

�2K2m2
1 � 2K2m2

2 � 2m2
1m

2
2 ,(8)

and depends only on the kinematics.
The complex conjugated variables z and z̄
parametrize the degrees of freedom left over by
the cut-conditions.

Analogously to the massless case [8], corresponding
to the ⇤ ⌅ 0 limit, because of (3), the LIPS in (2)
reduces to the remarkable expression,

⇥
d4⇥ = (1� 2⇤)

⇥⇥
dz ⇧ dz̄

(1 + zz̄)2
. (9)

The double-cut of a generic n-point amplitude in
the K2-channel is defined as

� ⇤
⇥

d4⇥ Atree
L (�1) Atree

R (�1) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. By using (9) for

1In terms of spinor variables that are associated to
massless momenta, we can define pµ = (1/2)�p|�µ|p] and
qµ = (1/2)�q|�µ|q], hence ⇥µ

+ = (1/2)�q|�µ|p] and ⇥µ
� =

(1/2)�p|�µ|q].

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

the LIPS, and (3) for the loop-momentum �µ
1 , one

has,

� = (1� 2⇤)
⇥⇥

dz ⇧ dz̄
Atree

L (⇤, z, z̄) Atree
R (⇤, z, z̄)

(1 + zz̄)2
, (11)

where the tree-amplitudes Atree
L and Atree

R are ratio-
nal in z and z̄. Notice that ⇤ is independent of z
and z̄, therefore its presence in the integrand does
not a⇤ect the integration algorithm. For ease of no-
tation, we give the ⇤-dependence of the integrand as
understood.

In [8] we aimed at proposing an e⌃cient method
for computing the double-cut of one-loop scattering
amplitudes. Accordingly, by applying a special ver-
sion of the so called Generalised Cauchy Formula also
known as the Cauchy-Pompeiu Formula [10], one can
write the two-fold integration in z- and z̄-variables
appearing in Eq.(11) simply as a convolution of an
unbounded z̄-integral and a contour z-integral 2,

� = (1� 2⇤)
�

dz

⇥
dz̄

Atree
L (z, z̄) Atree

R (z, z̄)
(1 + zz̄)2

, (12)

where the integration contour has to be chosen as
enclosing all the complex z-poles.

In this letter we rather want to focus on what links
Eq.(11) and Eq.(12), namely Stokes’ Theorem [8],
and on the geometrical interpretation of its conse-
quence: the double-cut � in (11) is the flux of a
2-form. It corresponds to an integral over the com-
plex tangent bundle of the Riemann sphere, where

2The roles of z and z̄ can be equivalently exchanged.

2

Integration in two steps

• Double Cut:

After the trivial t-integration

=
I

z̄=z∗
dz

Z
dz̄ f (z, z̄) , f (z, z̄) =

P(z, z̄)
Q(z, z̄)

! Primitive in z̄

=
I
dz F(z, z̄) , F(z, z̄) =

Z
dz̄ f (z, z̄) = F rat(z, z̄)+F log(z, z̄)

! Cauchy Residues in z

c[K] =

∣∣∣∣∣
rat

=
I
dz F rat(z,z∗) = Resz=0 F rat(z,z∗)+Resz "=0 Frat(z,z∗)

pole @ z= 0 (pure bubble);

poles @ z "= 0 (triangles reduction)

• The result will NOT depend on the choices of p and q, and it is symmetric under p↔ q.
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AL AR

!1

!1−K

(1)

K

i

K

i

K K

Q

(2)

45

1
+

2
+

3
+

−!+
1

+!−
2

(3)

1
+!

2
−

3
−

4
−

+!−
1

−!+
2

(4)

!µ
1

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|"µ|p]
2

+ z̄
〈p|"µ|q]
2

)
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I
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dz̄
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to the ⇤ ⌅ 0 limit, because of (3), the LIPS in (2)
reduces to the remarkable expression,

⇥
d4⇥ = (1� 2⇤)

⇥⇥
dz ⇧ dz̄

(1 + zz̄)2
. (9)

The double-cut of a generic n-point amplitude in
the K2-channel is defined as

� ⇤
⇥

d4⇥ Atree
L (�1) Atree

R (�1) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. By using (9) for

1In terms of spinor variables that are associated to
massless momenta, we can define pµ = (1/2)�p|�µ|p] and
qµ = (1/2)�q|�µ|q], hence ⇥µ

+ = (1/2)�q|�µ|p] and ⇥µ
� =

(1/2)�p|�µ|q].

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

the LIPS, and (3) for the loop-momentum �µ
1 , one

has,

� = (1� 2⇤)
⇥⇥

dz ⇧ dz̄
Atree

L (⇤, z, z̄) Atree
R (⇤, z, z̄)

(1 + zz̄)2
, (11)

where the tree-amplitudes Atree
L and Atree

R are ratio-
nal in z and z̄. Notice that ⇤ is independent of z
and z̄, therefore its presence in the integrand does
not a⇤ect the integration algorithm. For ease of no-
tation, we give the ⇤-dependence of the integrand as
understood.

In [8] we aimed at proposing an e⌃cient method
for computing the double-cut of one-loop scattering
amplitudes. Accordingly, by applying a special ver-
sion of the so called Generalised Cauchy Formula also
known as the Cauchy-Pompeiu Formula [10], one can
write the two-fold integration in z- and z̄-variables
appearing in Eq.(11) simply as a convolution of an
unbounded z̄-integral and a contour z-integral 2,

� = (1� 2⇤)
�

dz

⇥
dz̄

Atree
L (z, z̄) Atree

R (z, z̄)
(1 + zz̄)2

, (12)

where the integration contour has to be chosen as
enclosing all the complex z-poles.

In this letter we rather want to focus on what links
Eq.(11) and Eq.(12), namely Stokes’ Theorem [8],
and on the geometrical interpretation of its conse-
quence: the double-cut � in (11) is the flux of a
2-form. It corresponds to an integral over the com-
plex tangent bundle of the Riemann sphere, where

2The roles of z and z̄ can be equivalently exchanged.

2

– Coe�cient of the 2-point Function. The expres-
sion of the 2-point coe⌅cient can be finally obtained
by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),

c2 ⇥
�rat

�I2
=

= �Resz=0F
rat(z, z̄)� Resz ⇥=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe⌅cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for di⇥erential forms. In what follows, we
use the notation: gz = �g/�z and gz̄ = �g/�z̄.

Let us recall that the complex 1-form

⇤ =
1

z � z0
dz , (24)

which is defined for all z except z0, is a closed form,

d⇤ = d

�
1

z � z0

⇥
⇧ dz =

(�1)
(z � z0)2

dz ⇧ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ⌅ = F⇤,

⌅ = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d⌅ = dF ⇧ ⇤ = (z � z0)�1Fz̄ dz̄ ⇧ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d⌅. Due to the singularity
of ⌅ at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ⌅ has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

⇤⇤

Dr

d⌅ =
⇤

⇥Dr

⌅ =
⇤

⇥D
⌅ �

⇤

⇥D(z0;r)
⌅ . (28)

Here �D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

⇤

⇥D(z0;r)
⌅ = i

⇤ 2�

0
F(z0 + reit)dt , (29)

converges to 2⇥iF(z0) as r goes to 0. Letting r ⇤
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

⇤⇤

D
d⌅ =

⇤

⇥D
⌅ � 2⇥iF(z0) . (30)

By using the explicit expression of ⌅ and d⌅, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-
Pompeiu Formula,

2⇥iF(z0) =
⇤

⇥D

F(z)
z � z0

dz �
⇤⇤

D

Fz̄

z � z0
dz̄ ⇧ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇥i

⇤

⇥D

F(z)
z � z0

dz (32)

4

Integration in two steps

• Double Cut:

After the trivial t-integration

=
I

z̄=z∗
dz

Z
dz̄ f (z, z̄) , f (z, z̄) =

P(z, z̄)
Q(z, z̄)

! Primitive in z̄

=
I
dz F(z, z̄) , F(z, z̄) =

Z
dz̄ f (z, z̄) = F rat(z, z̄)+F log(z, z̄)

! Cauchy Residues in z

c[K] =

∣∣∣∣∣
rat

=
I
dz F rat(z,z∗) = Resz=0 F rat(z,z∗)+Resz "=0 Frat(z,z∗)

pole @ z= 0 (pure bubble);

poles @ z "= 0 (triangles reduction)

• The result will NOT depend on the choices of p and q, and it is symmetric under p↔ q.
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4ple-cut

3ple-cut

2ple-cut

Britto, Cachazo, Feng

Forde

P.M.

Cauchy’s formula

Laurent series

Stokes’ Thm 
Cauchy-Pompeiu formula



gg→ gggg

• Numerical Result: Ellis, Giele, Zanderighi (2006)

• Analytical Result:

Amplitude N = 4 N = 1 N = 0|CC N = 0|rat

(−−++++) BDDK’94 BDDK’94 BDDK’94 BDK’05, KF’05

(−+−+++) BDDK’94 BDDK’94 BBST’04 BBDFK’06, XYZ’06
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(−−+−++) BDDK’94 BBCF’05, BBDP’05 BFM’06 XYZ’06

(−+−+−+) BDDK’94 BBCF’05, BBDP’05 BFM’06 XYZ’06

Quadruple Cuts

Bidder, Bjerrum-Bohr,

Dunbar & Perkins (2005)

Double Cuts Britto, Feng & P.M. (2006)

→

→ &
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!!→ !!!!

• Numerical Result: Nagy & Soper (2006); Ossola, Papadopoulous & Pittau (2007)

• Analytical Result: Mahlon (1996); Binoth, Gehrmann, Heinrich & P.M. (2007)
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! Heavy-top limit

• Numerical: H + 4 partons Campbell, Ellis, Zanderighi (2006)
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• "-MHV amplitudes (generic configuration) Glover, Williams, P.M. (2008)
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Badger, Glover, Williams, P.M.

! Heavy-top limit

• Representative Feynman Diagrams
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 (2008-2009)

Badger, Glover, Williams, P.M.

! Heavy-top limit

• Representative Feynman Diagrams
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4 44 φφ

φ

φ C4;φ4|1|2|3C4;φ|1|2|34C4;φ|34|1|2 C4;φ|1|23|4

Figure 1: Scalar box coefficients for A(1)
4 (φ; 1, 2, 3, 4). From the four topologies we must also

include cyclic permutations of the four gluons.

Here Cj;iIj;i represents a j-point scalar basis integral, with a coefficient Cj;i. The sum

over i represents the sum over the allowed topologies given by the external momentum

in the amplitude. Switching to complex momenta and setting four propagators on-shell

[14] freezes the loop momentum and uniquely determines each of the box coefficients C4;i.

Setting fewer numbers of propagators on-shell no longer freezes the loop momentum com-

pletely, however it has been shown, [15] that by parameterising the loop momentum in

a specific way, one can directly determine the triangle coefficients C3;i. Finally one may

determine the coefficients associated with the scalar bubble integrals using a similar pa-

rameterisation to that used to determine the triangles [15] which now depends on two

variables. A different approach is to use spinor integration [17, 18] which relates double

cuts to residues of complex functions via the holomorphic anomaly, one may also use this

approach to calculate triple cuts [16]. Recently [39], this method has been re-interpreted

as a specific contour integration in momentum space, with the bubble coefficient related

to the residues of an analytic function in the complex plane.

4. Scalar Box Coefficients

We begin our calculation of the φ-NMHV amplitude by considering the coefficients of the

scalar boxes appearing in the cut-constructible part of the amplitude. To obtain these

coefficients we use generalised unitarity with complex momentum [14]. In general there are

16 box topologies, which can be obtained from permutations of those shown in Fig 1. For

the specific helicity configuration we consider the coefficients of the two mass easy boxes

are all zero. This leaves 12 coefficients to determine, those associated with the one-mass

boxes have the following form,

Ĉ4;φ1|2|3|4(φ, 1+, 2−, 3−, 4−) = − s3
234

2〈1|pφ|2]〈1|pφ|4][23][34]
(4.1)

Ĉ4;φ2|3|4|1(φ, 1+, 2−, 3−, 4−) =
〈2|pφ|1]3

2s134〈2|pφ|3][34][41]
+

〈34〉3m4
φ

2s134〈1|pφ|2]〈3|pφ|2]〈41〉
(4.2)

Ĉ4;φ4|1|2|3(φ, 1+, 2−, 3−, 4−) = Ĉ4;φ2|3|4|1(φ, 1+, 4−, 3−, 2−). (4.3)

– 4 –

C3;φ|kk+1|k+2k+3 C3;φ|k|k+1k+2k+3 C3;φ|kk+1k+2|k+3

C3;φkk+1|k+2|k+3 C3;φk+1|k+2k+3|k C3;φk|k+1|k+2k+3

Figure 2: Scalar Triangles for φgggg.

C3;φ|41|23(φ, 1+, 2−, 3−, 4−) = C3;φ|23|41(φ, 1+, 2−, 3−, 4−), (5.4)

where

K"
1 = γ

γK1 − S1K2

γ2 − S1S2
(5.5)

K"
2 = γ

γK2 − S2K1

γ2 − S1S2
(5.6)

γ±(K1,K2) = K1 · K2 ±
√

K1 · K2
2 − K2

1K2
2 , (5.7)

and Si = K2
i .

5.1 ε−2 pole checks

As a check of our amplitude, we combine the ε−2 arising from box and triangle integrals,

we find that,

A(1)(φ; 1+, 2−, 3−, 4−)| 1
ε2

=

−A(0)(φ; 1+, 2−, 3−, 4−)
cΓ

ε2

((
µ2

R

−s12

)ε

+

(
µ2

R

−s23

)ε

+

(
µ2

R

−s34

)ε

+

(
µ2

R

−s41

)ε)
(5.8)

matching the known universal structure observed in the φ-MHV and “all-minus” cases

[34–36].

6. Scalar Bubble Coefficients

The allowed bubble topologies for the φ-NMHV amplitude are shown in Fig. 3. We find

that all bubbles with a single φ field on one side of the cut vanish. This represents the

vanishing of all log(m2
H) terms. In addition we find no logarithms associated with s34

or s23. Using the zz-integration method [39] we generated compact expressions for the
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H) terms. In addition we find no logarithms associated with s34

or s23. Using the zz-integration method [39] we generated compact expressions for the
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Figure 3: The three bubbles topologies appearing in the φgggg amplitudes.

coefficients of each invariant, which we checked numerically with Forde’s method [15]. We

find it most convenient to express our answer for the 2 point coefficients in terms of the

following basis of (finite) functions,

Lk(s, t) =
log (s/t)

(s − t)k
. (6.1)

In terms of these the combination of all 2-cuts yields the following expression,

C2(φ, 1+, 2−, 3−, 4−) =

(
4 −

Nf

N

)
C(1)

2 +

(
1 −

Nf

Nc
+

Ns

Nc

)
C(2)

2 (6.2)

Where

C(1)
2 =

(
i〈24〉〈3|pφ|1]2

s124[42]
L1 (s124, s12) −

i〈23〉〈4|pφ|1]2

s123[32]
L1 (s123, s12)

)
+ (2 ↔ 4) (6.3)

and

C(2)
2 =

(
2is124〈24〉〈34〉2[41]2

3[42]
L3 (s124, s12)

+
i〈34〉[41] (3s124〈34〉[41] + 〈24〉〈3|pφ|1][42])

3[42]2
L2 (s124, s12)

+

(
2is124〈34〉2[41]2

〈24〉[42]3
−

i〈24〉〈3pφ1]2

3s124[42]

)
L1 (s124, s12)

+
i〈3|pφ|1] (4s124〈34〉[41] + 〈3|pφ|1](2s14 + s12))

s124〈24〉[42]3
L0 (s124, s12)

− 2is123〈23〉〈34〉2 [31]2

3[32]
L3 (s123, s12) +

i〈23〉〈34〉[31]〈4|pφ |1]
3[32]

L2 (s123, s12)

+
i〈23〉〈4|pφ|1]2

3s123[32]
L1 (s123, s12)

)
+ (2 ↔ 4) (6.4)

6.1 ε−1 pole checks

Checking the pure 1
ε pole by summing the bubble coefficients gives:

4∑

k=1

C2;φk + C2;φkk+1 = 0 (6.5)

as expected since β0 = 0 when using the effective interaction for the Higgs.
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Optical-Thm and Berry Phase

The double-cut is the flux of  a 2-form.
The anholonomy phase shift is a 
consequence of  Stokes’ Theorem.

the curvature 2-form, ⇤, is defined as 3,

⇤ =
dz ⌅ dz̄

(1 + |z|2)2 . (13)

The product Atree
L Atree

R is a rational function of z and
z̄, hence it can be written as ratio of two polynomials,
P and Q,

Atree
L (z, z̄) Atree

R (z, z̄) =
P (z, z̄)
Q(z, z̄)

, (14)

with the following relations among their degrees,

degzQ = degzP , degz̄Q = degz̄P . (15)

2. Optical Theorem

In the double-cut integral (11), we did not make
any assumptions on the tree-level amplitudes sewn
along the cut, thus providing a general framework to
the integration method developed in [8]. If we now
choose Atree

L = A⇥,treem⇤2 , that is the conjugate scatter-
ing amplitude of a process m⇤ 2, and Atree

R = Atree
n⇤2,

that is the amplitude of a process n ⇤ 2, then �
reads,

� =
⇥

d4⇥ A⇥,treem⇤2 Atree
n⇤2 =

= �i
⇤
Aone�loop

n⇤m �A⇥,one�loop
m⇤n

⌅
=

= 2 Im
⇧

Aone�loop
n⇤m

⌃
, (16)

which is the definition of the two-particle disconti-
nuity of the one-loop amplitude Aone�loop

n⇤m across the
branch cut in the K2-channel, corresponding to the
field-theoretic version of the Optical Theorem (1) for
one-loop Feynman amplitudes.

On the other side, because of Stokes’ Theorem in
(11, 12), one has,

� = (1� 2�)
⇥⇥

dz ⌅ dz̄
A⇥,treem⇤2 Atree

n⇤2

(1 + zz̄)2
=

= (1� 2�)
�

dz

⇥
dz̄

A⇥,treem⇤2 Atree
n⇤2

(1 + zz̄)2
, (17)

3In [8] it has been shown that the double-cut of the scalar
2-point function, �I2 =

R
d4⇥ amounts to the integral

RR
⇤ =

�2�i. This result corresponds to the integration of the first
Chern class, (i/�)

RR
⇤ = 2.

which provides a geometrical interpretation of the
imaginary part of one-loop scattering amplitudes, as
a flux of a complex 2-form through a surface bounded
by the contour of the z-integral (the contour should
enclose all the poles in z exposed in the integrand
after the integration in z̄ [8]).

Given the equivalence of (16) and (17), a corre-
spondence between the imaginary part of scattering
amplitudes and the anholonomy of Berry’s phase does
emerge, since the latter is indeed defined as the flux
of a 2-form in presence of curved space [1, 2]. In
this context, one could establish a parallel descrip-
tion between the Aharonov-Böhm (AB) e⌅ect and
the double-cut of one-loop Feynman integrals.

In the AB-e⌅ect [11], an electron-beam splits with
half passing by either side of a long solenoid, be-
fore being recombined. Although the beams are kept
away from the solenoid, so they encounter no mag-
netic field (B = 0), they arrive at the recombination
with a phase-di⌅erence that is proportional to the
magnetic flux through a surface encircled by their
paths. The non-trivial anholonomy in this case is a
consequence of Stokes’ Theorem, where the 2-form
Berry curvature is written as the di⌅erential of the
1-form vector potential (⌃⇥A).

In the case of the double-cut of one-loop Feynman
integrals, we could describe the evolution of the
system depicted in Fig.1, from the left to the right.
The two particles produced in the AL-scattering,
going around the loop and initiating the AR-process,
at the AR-interaction point would experience a
phase-shift due to the non-trivial geometry in
e⌅ective momentum space induced by the on-shell
conditions. As in the AB-e⌅ect, the anholonomy
phase-shift is a consequence of Stokes’ Theorem,
and here it corresponds to the imaginary part of the
one-loop Feynman amplitude.

– Acknowledgements. I wish to thank Mario Argeri,
Bruce Campbell, Gero von Gersdorf, Bryan Lynn,
Ettore Remiddi and Aleksi Vuorinen, for stimulating
and clarifying discussions, and Michael Berry for his
feedback on the manuscript.
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Aharonov-Bohm effect

Optical Theorem

P.M. (2009)

AL AR

!1
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+

−!+
1

+!−
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(3)

1
+!

2
−

3
−

4
−

+!−
1

−!+
2

(4)

!µ
1

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|"µ|p]
2

+ z̄
〈p|"µ|q]
2

)

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 38

Simple Geometry

• z=0 pole

i) q2 = p2 = 0

ii) Kµ≡ pµ+qµ (5)

!µ
1

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|!µ|p]
2

+ z̄
〈p|!µ|q]
2

)
= pµ

is solution of the double-cut

K

p

q

• Geometric Phases

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 39



Cut-Integration replaced
by

partial fractioning
(and its generalization)

...or not to integrate



Multi-Loop Integrand-Reduction
by 

Polynomial Division

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011)

Zhang (2012)

Mirabella, Ossola, Peraro, & P.M (2012)



Problem: what is the form of the residues?

“find the right variables encoding the cut-structure”

• Loop momentum decomposition

q + p

i

=
4

X

↵=1

x

↵

e

(ijk··· )
↵

, x

↵

= (q + p

i

) · e(ijk··· )
↵

(2.7)

cut external (p
i

) auxiliary (v
i

) �-variables (ISP’s)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

cut/legs basis �-variables (ISP’s)

external (p
i

) auxiliary (v
i

)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

• ISP’s = Irreducible Scalar Products:

– q-components which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical fitting

• the 5-point residue doesn’t show up

• the 4-point residue doesn’t show up

• �R = reduced polynomial (⇢ �)
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 variables

Ossola & P.M. (2011)



Example 10.2

If a = 11 and b = 4 then q = 2 and r = 3.

Remark 10.2

Note that if b < 0 then |b| = �b. Applying the theorem to a and �b > 0 we
can find unique integers q and r such that a = �bq + r with 0  r < �b. Let
q

0 = �q 2 Z then a = bq

0 + r with 0  r < �b.

10.2 Congruence Modulo n.

Divisibility leads to the concept of congruence.

Definition 10.2

Let n be a positive integer. Integers a and b are said to be congruent

modulo n if a�b is divisible by n. This is denoted by writing a ⌘ b(mod n).
We call n the modulus. If a is not congruent b modulo n we write a 6⌘
b (mod n).

Example 10.3

17 and 65 are congruent modulo 6, because 65� 17 = 48 is divisible by 6.

Theorem 10.4

The following statements are all equivalent:

(i) a ⌘ b(mod n)
(ii) n|(a� b)
(iii) a� b = nt for some t 2 Z
(iv) a = b + nt for some t 2 Z.

Proof.

(i) =) (ii): Suppose that a ⌘ b(mod n). Then from Definition (10.2),
n|(a� b).
(ii) =) (iii): Suppose that n|(a� b). Then by Definition 10.1, there exists a
t 2 Z such that a� b = nt.

(iii) =) (iv): Suppose that a� b = nt for some t 2 Z. Then by adding b to
both sides we get a = b + nt which is the statement of (iv).
(iv) =) (i): Suppose that a = b + nt for some t 2 Z. Then a � b = nt. By
Definition 10.1, a� b is divisible by n and so a ⌘ b(mod n).

4

 Division Modulo n

A simple idea from Modular Arithmetic

hold the remainder !



Ideal

Groebner Basis

Multivariate Polynomial Division
Zhang (2012); 
Mirabella, Ossola, Peraro, & P.M. (2012) 

2

integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =





!
∑

j=1

αj qj + pi





2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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tudes, independently of the number of loops.
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nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
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in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
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numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
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• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.
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In what follows, we assume 4-dimensional loop-
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Unless otherwise indicated, we will assume lexicographic order.
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Pm
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order is fixed.
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�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following
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Proposition 2.2. Any n-particle integrand with n > 4` is reducible.
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larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.
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dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
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where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.
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The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.
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Ni1···in(z)
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. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,
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where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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number m of elements of the Gröbner basis is the cardi-
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.
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tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

n-denominator
integrand

(n-1)-denominator
integrand

remainder = residue
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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Tree-level 
decomposition

by 
partial fractioning:
is this an accident?

Apparently no!



Parametric form of the residues is
process independent
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The actual values of the coefficients 
in the residues are are process dependent

 Parametric form of the residues
is process independent.
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Knowing the parametric form of residues is 
mandatory!!!

 Parametric form of the residues
is process independent.

 Actual values of the coefficients
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+ · · · · · ·+
n
X

1=i1<i2

�i1i2

Di1Di2
+

n
X

1=i1

�i1

Di1
+Q;

– 10 –



The Maximum-Cut Theorem

4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .

– 8 –

4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions this

implies the presence of four constraints for each loop momenta.

We assume that:

in non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one.

Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic
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IV. THE MAXIMUM-CUT THEOREM

At ! loops, in four dimensions, we define a maximum-
cut as a (4!)-ple cut

Di1 = Di2 = · · · = Di4! = 0 , (23)

which constrains completely the components of the loop
momenta. In four dimensions this implies the presence of
four constraints for each loop momenta. We assume that,
in non-exceptional phase-space points, a maximum-cut
has a finite number ns of solutions, each with multiplicity
one. Under this assumption we have the following

Theorem IV.1 (Maximum cut) The residue at the
maximum-cut is a polynomial paramatrised by ns coeffi-
cients, which admits a univariate representation of degree
(ns − 1).

Proof. Let us parametrize the propagators using 4! vari-
ables z = (z1, . . . z4!). In this parametrization, the solu-
tions of the maximum-cut read,

z(i) =
(

z
(i)
1 , . . . , z

(i)
4!

)

with i = 1, . . . , ns . (24)

Let Ji1···i4! be the ideal generated by the on-shell de-
nominators, Ji1···i4! = 〈Di1 , . . . , Di4!〉 .
According to the assumptions, the number ns of the so-
lutions of (23) is finite, and each of them has multiplicity
one, therefore Ji1···i4! is zero-dimensional [20, 33] and
radical [34] [17]. In this case, the Finiteness Theorem
[17, 20] ensures that the remainder of the division of any
polynomial modulo Ji1···i4! can be parametrised exactly
by ns coefficients.

Moreover, up to a linear coordinate change, we can
assume that all the solutions of the system have distinct

first coordinate z1, i.e. z
(i)
1 $= z

(j)
1 ∀ i $= j. We observe

that Ji1···i4! and z1 are in the Shape Lemma position [19,
20, 25, 26], therefore a Gröbner basis for the lexicographic
order z1 < z2 < · · · < zn is Gi1···i4! = {g1, . . . , g4!}, in
the form



















g1(z) = f1(z1)
g2(z) = z2 − f2(z1)

...
g4!(z) = z4! − f4!(z1)

(25)

The functions fi are univariate polynomials in z1. In
particular f1 is a rank-ns square-free polynomial [25],

f1(z1) =
ns
∏

i=1

(

z1 − z
(i)
1

)

, (26)

i.e. it does not exhibits repeated roots. The multivari-
ate division of Ni1···ı4! modulo Gi1···i4! leaves a remainder
∆i1···i4! which is a univariate polynomial in z1 of degree
(ns−1) [26], in accordance with the Finiteness Theorem.

The maximum-cut theorem ensures that the
maximum-cut residue, at any loop, is completely

FIG. 1. The on-shell diagrams in the picture are exam-
ples of maximum-cuts. The first diagram in the left column
represents the 5ple-cut of the 5-point one-loop dimensionally
regulated amplitude. All the other on-shell diagrams are con-
sidered in four dimensions. For each of them, the general
structure of the residue ∆ (according to the Shape Lemma)
and the corresponding value of ns are provided.

determined by the ns distinct solutions of the cut-
conditions. In particular it can be reconstructed by
sampling the integrand on the solutions of the maximum
cut itself.
At one loop and in (4 − 2ε)-dimensions, the 5-ple

cuts are maximum-cuts. The remarkably simple struc-
ture of the Gröbner basis in Eq. (16) is dictated by the
maximum-cut theorem. Moreover in this case ns = 1,
thus the residue in Eq. (17) is a constant.
The structures of the residues of the maximum cut,

together with the corresponding values of ns, for a set
of one-, two-, and three-loop diagrams are collected in
Figure 1.

The calculations of Sections III and IV have been
carried out using the package S@M [35] and the func-
tions GroebnerBasis and PolynomialReduce of Math-

ematica, respectively needed for the generation of the
Gröbner basis and the polynomial division.

V. CONCLUSIONS

We presented a new algebraic approach, where the
evaluation of scattering amplitudes is addressed by using
multivariate polynomial division, with the components
of the loop-momenta as indeterminates. We found a re-
currence relation to construct the integrand decomposi-
tion of arbitrary scattering amplitudes, independently of
the number of loops. The recursive algorithm is based
on the Weak Nullstellensatz Theorem and on the divi-
sion modulo the Gröbner basis associated to all possi-
ble multi-particle cuts. Using this technique, we red-
erived the well-known one-loop integrand decomposition
formula. Finally, by means of the Finiteness Theorem
and of the Shape Lemma, we proved that the residue at
the maximum-cuts is parametrised exactly by a number
of coefficients equal to the number of solutions of the cut
itself.

Examples of Maximum-Cuts
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Application at one-loop

Choice of 4-dimensional basis for an m-point residue
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It can be easily extended to higher-rank numerators
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)
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(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3
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+
(
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3,2 x2
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3

)
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(

c(ijk)
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4 + c(ijk)
3,6 x3

3

)
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3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)
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}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)
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)
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3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
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3,7 µ2 −
(
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3,1 + c(ijk)
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3,4 + c(ijk)
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)
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4 + c(ijk)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)
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(2.13)
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]
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,
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}
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is parametrized as,
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3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(
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3,3 x3

4 + c(ijk)
3,6 x3
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)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)
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4,2 µ2 + c(ijk!)
4,4 µ4 +
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(
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4,3 µ2
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(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=
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4,4 µ4
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(
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4,1 +c(ijk!)

4,3 µ2
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(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk
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}
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is parametrized as,
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+
(
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3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=
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4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
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4,3 µ2
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(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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}

(2.15)
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)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −
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3,6 x3
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)

(e1 · e2)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,
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{
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−
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}
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= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
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(K3 · e4)x4−(K3 · e3)x3
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,
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3,7 µ2 +
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)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)
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3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(
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3,2 x2

4 + c(ijk)
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3

)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,
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{
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−
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,
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+
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)

(q + p0) · e4 + c(ijk)
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3 =
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(
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3,8 µ2)x4 + (c(ijk)
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3,9 µ2)x3

)
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+
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,
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(2.13)
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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∆ijk(q̄) = Resijk
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N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3
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(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)
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+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
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+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)
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(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
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)
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(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)
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2 . (2.18)

2.2.6 Single cut
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n−1
∑

i<<!
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−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j
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(2.19)

can be interpolated as follows,
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1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:

– 8 –

Scattering AMplitudes from Unitarity-based Reduction Algorithm at 
the Integrand-level
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Integrand Reduction 
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Integrand Reduction  with Laurent series expansion
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PeraroNinja C++ library

coefficients of MI’s :: a = a’+ a’’

Improved Integrand Red’n



Samurai...
Integrand Reduction for One-Loop Integrals

Generalised D-dim Unitarity
:: Complete reduction to D-reg Master Integrals
:: cut-constructible & rational terms at once

Ossola Reiter Tramontano P.M.

...meets Golem

Ossola Papadopoulos Pittau

Anastasiou, Britto, Feng, Kunszt, P.M.
Ellis Giele Kunszt Melnikov

Binoth Guillet Heinrich Pilon Reiter

Integrand Generation

Tensor Reduction

Automatic one-loop calculations



The GoSam framework

σNLO =

∫

n

(

dσBorn + dσVirtual +

∫

1

dσSubtraction

)

+

∫

n+1

(dσReal − dσSubtraction)

GOSAM computes virtual contributions:

dσVirtual =
∫

dd" N
D1···Dk

=
∑

i di +
∑

j cj +
∑

k bk

dσVirtual =
∫

dd" N
D1···Dk

= +
∑

! a! + Rational

Generation of N
Computation of the coefficients & R

Convolution with scalar integrals

Modular structure
new ideas and techniques are easily implemented
the GOSAM framework evolves!

What about the other ingredients?

QCD@LHC 2013 – p.3/8

Cullen van Deurzen Greiner Heinrich Luisoni 
Mirabella Ossola Peraro Reichel Schlenk 
von Soden-Fraunhofen Tramontano P.M.

The GoSam Project

Monte Carlo Generator



Monte Carlo Generator

Multi Process One-Loop Provider

The GoSam framework

σNLO =

∫
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(

dσBorn + dσVirtual +
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1

dσSubtraction

)

+
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(dσReal − dσSubtraction)

GOSAM computes virtual contributions:
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dd" N
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=
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The GoSam Project



New Methods for Scattering
Amplitudes in Gauge Theories

Abstract

Our research focuses on the development of integrand reduction methods for the evaluation of multi-loop scattering amplitudes in quantum field theories (QFTs). We have developed a coherent
mathematical framework for the integrand decomposition of Feynman graph integrals, based on algebraic geometry. This method is applicable both for phenomenological studies and for the
investigation of more formal properties of QFTs. Our algorithm has been implemented in the reduction libraries of the GOSAM package, a tool dedicated to the evaluation of one-loop amplitudes,
and used for phenomenological analyses relevant for the LHC. We demonstrate the completeness of our reduction algorithm by applying it to generic dimensionally regulated massive multi-loop
integrals in gauge theories.

Introduction

Scattering amplitudes in Quantum Field Theories:
• analytic functions of kinematic variables, determined by

their singularity structure
– accessible via graph techniques

(on-shell conditions $ cut-diagrams)
• decomposed in terms of independent (ir)rational or tran-

scendental functions, according to the number of loops

Generalized unitarity cuts as projectors isolating each
function through its analytic structure

Integrand reduction methods:
• based on generalized unitarity
• yield the decomposition of the amplitude from integrating

the decomposition of the integrands
• rely on the integrand reduction master formula:

– numerators of Feynman integrals as a combination of
(products of) denominators

– the residues at the multiple cuts are the coefficients of
the combination

· amplitude decomposition , algebraic problem
· i.e. the determination of the residues of the multiple cuts

Integrand reduction

Generic `-loop integral:

Mn =

Z
ddq1 . . . d

dq` Ii
1

...in, Ii
1

...in ⌘
Ni

1

...in

Di
1

. . . Din

• The numerator Ni
1

...in $ polynomial in qi

• The denominators Di $ (quadratic) polynomials in qi

The integrand-reduction method leads to:

Ii
1

...in =
�i

1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

• The residues �i
1

...ik $ polynomials in qi

– topology-dependent parametric form (independent of
the numerators)

– the coefficients of the parametrization are process-
dependent

Integrand-reduction via multivariate division:
• Trade (q1, . . . , q`) with their coordinates z ⌘ (z1, . . . , zm)

• Define the Ideal

I ⌘ hDi
1

, . . . , Dini =

8
<

:p(z) : p(z) =
X

j

hj(z)Dj(z)

9
=

;

– p(z) and hj(z) $ multivariate polynomials in z

• Take a Gröbner basis GI of I

GI = {g1, . . . , gs} such that I = hg1, . . . , gsi

• Perform the multivariate division Ni
1

...in/GI

Ni1...in =
X

k

Ni1···ik�1ik+1···in Dk + �i1...in

Ii1...in =
X

k

Ii1···ik�1ik+1···in +
�i1...in

Di1 . . .Din

· remainder of the division $ residue of Di
1

, . . . , Din
· recursive relation for the integrand decomposition

Two approaches to integrand reduction:
• Fit-on-the-cut approach

– use generic N to get the parametric form of the �’s
– determine the coefficients sampling on the cuts

• Divide-and-Conquer approach
– generate the N of the process
– compute the residues iteratively
– no multiple-cut solutions needed

From integrand to integral by integrating:

Mn =

Z
ddq1 . . . d

dq`

0

@ �i
1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

1

A

• spurious terms vanish upon integration
• other terms lead to Master Integrals (MIs)

One loop

The d-dimensional decomposition is:

From Amplitudes to observables:

• (NLO event generator) = (GoSam) + (Monte Carlo)
• Interface GoSam – Monte Carlo:

– via Binoth Les Houches Accord
– implemented for Madevent, Powheg, and Sherpa

Integrand reduction via Laurent expansion:
• Uses asymptotic limits to simplify the reconstruction
• Main features:

– fewer coefficients have to be determined
– the subtraction works at the coefficient level

· faster and more stable algorithm
• Implemented in the C++ library Ninja

– semi-numerical implementation via polynomial division
– interfaced with the GoSam package

• Application: p p ! t t̄ H + 1 jet

ed + 1894 diagrams  0
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Integrand reduction and higher rank numerators:
• Higgs production via gluon fusion

– in the mt ! 1 limit

– leads to integrands with rank = (# denominators) +1
• Extension of the algorithm

– new coefficients enter the residues �j
1

···jk
– extended sampling implemented in Samurai
– extended Laurent expansion implemented in Ninja

• Application: p p ! H + 2 jets

ed + 925 diagrams

• Application: p p ! H + 3 jets

ed + 13178 diagrams
-50
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50
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⇡/2 ⇡ 3⇡/2 2⇡

a
0

Angle ✓ around y-axis

qq̄ ! Hq0q̄0g

qq̄ ! Hqq̄g

gg ! Hqq̄g

gg ! Hggg

Higher loops

Reduction of N = 4 SYM and N = 8 SUGRA amplitudes

• Fit-on-the-cut approach
• Unitarity-based construction of the integrand
• Illustrative example:

Reduction of the photon self-energy diagrams in QED

• Divide-and-conquer approach
• d-dimensional rank-four numerators
• Massive particle in the loop
• Reduction in presence of higher powers of propagators

Maximum Cut Theorem
• Maximum Cut : cut constraining all the qi’s

– Assumption: ns non-degenerate solutions
Theorem The residue is parametrized by ns coefficients.
Theorem It exists an univariate polynomial representation
• Examples
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The path to Hjjj @ NLO

• effective Hgg-coupling:

higher rank :: r < n+2

Effective Vertices
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Towards Higgs jets in GF @ NLO
H+0j 1 NLO

gg ! H 1 NLO
H+1j 62 NLO

qq ! Hqq 14 NLO
qg ! Hqg 48 NLO

H+2j 926 NLO
qq0 ! Hqq0 32 NLO
qq ! Hqq 64 NLO
qg ! Hqg 179 NLO
gg ! Hgg 651 NLO

H+3j 13179 NLO
qq0 ! Hqq0g 467 NLO
qq ! Hqqg 868 NLO
qg ! Hqgg 2519 NLO
gg ! Hggg 9325 NLO

Computational Challenges:

I Over 10,000 diagrams

I Higher-Rank terms

I 60 Rank-7 hexagons

Complex calculations ! GoSam enhanced
grouping, optimalization through Form4.0, numerical polarization vectors, parallelization
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Campbell, Ellis, Williams
• our amplitudes confirmed by MCFM (v6.4)

and generates the following minimal set of processes

g g → H g g , g g → H q q̄ ,

q q̄ → H q q̄ , q q̄ → H q′ q̄′ . (4)

The other processes are obtained by performing the ap-
propriate symmetry transformation.
The ultraviolet (UV), the infrared, and the collinear

singularities are regularized using dimensional reduction
(DRED). UV divergences have been renormalized in the
MS scheme. In the case of LO [NLO] contributions we de-
scribe the running of the strong coupling constant with
one-loop [two-loop] accuracy, decoupling the top quark
from the running.

The effective Hgg coupling, see Appendix A, leads to
integrands that may exhibit numerators with rank r larger
than the number n of the denominators, i.e. r ≤ n+1. In
general, for these cases, the parametrization of the residues
at the multiple-cut has to be extended as discussed in
Ref. [47]. As a consequence, the decomposition of any
one-loop n-point amplitude in terms of master integrals
(MIs) acquires new contributions, reading as,

Mone-loop

n = An + δAn . (5)

The term An corresponds to the standard decomposition
for the case of a renormalizable theory (r ≤ n), while the
additional contribution δAn enters whenever r ≤ n + 1.
Their actual expressions can be found in Eqs. (2.16) and
(6.11) of [47].
The extended integrand decomposition has been imple-

mented in the samurai library. In particular, the coeffi-
cients multiplying the MIs appearing in An and δAn are
computed by using the discrete Fourier transform as de-
scribed in Refs. [45, 53].

In the case of Higgs plus jets production, higher rank
numerators arise from diagrams where the Higgs boson is
attached to a pure gluonic loop. However, as shown in
Appendix B, the rank-(n + 1) terms of an n-point inte-
grand are proportional to the loop momentum squared, q2,
which simplifies against a denominator. Therefore, they
generate (n−1)-point integrands with rank r = n−1. Con-
sequently, the coefficients of the MIs in δAn have to vanish
identically, as explicitly verified. Since δAn in Eq. (5) does
not play any role, the integrand reduction can be also per-
formed with the current public version of samurai, which
does not contain the extended decomposition - hence, im-
plying a lighter reduction, with fewer coefficients involved.
We remark that, within the integrand reduction algo-

rithm, it is possible to benefit immediately from the pres-
ence of powers of q2 in the numerators, without any alge-
braic cost: the contribution of those terms is automatically
taken into account by the integrand reconstruction of the
subdiagrams (because they give no contribution on the
corresponding massless cut). On the contrary, within a
tensor reduction algorithm, these terms would cancel only
after the algebraic manipulation of the integrand.

The numerical values of the one-loop amplitudes of the
processes (4) in a non-exceptional phase space point are
collected in Appendix C. The values of the double and the
single poles conform to the universal singular behavior of
dimensionally regulated one-loop amplitudes [61–65]. Af-
ter appropriate crossing to the H → 4-parton decay kine-
matics, we compared our results with the ones presented
in Table I of Ref. [26], finding excellent agreement. Fur-
thermore, converting our results for the Hjj-production
channels from DRED to the ’t Hooft-Veltman scheme, we
are in perfect agreement with the most recent version of
MCFM (v6.4).

Figure 1: Transverse momentum pT of the Higgs boson.

Figure 2: Pseudorapidity η of the Higgs boson.
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Figure 3: Transverse momentum pT of the first jet.

Figure 4: Transverse momentum pT of the second jet.

3. Numerical results for pp → Hjj

In this section we present a selection of phenomeno-
logical results for proton-proton collisions at the LHC at√
s = 8 TeV, as a sample of the results that can be easily

obtained with the GoSam-Sherpa automated setup [37–
40]. A more complete analysis of Higgs production in
gluon fusion, which merges several multiplicities [66] and
employs the code for the virtual matrix elements of Hjj
presented here, is going to be discussed in [67].
The results shown in this section are obtained using the

parameters listed below:

MH = 125 GeV , GF = 1.16639 · 10−5 GeV−2 ,

αLO

s (MZ) = 0.129783 , αNLO

s (MZ) = 0.117981 ,

v2 =
1√
2GF

. (6)

Figure 5: Pseudorapidity η of the first jet.

Figure 6: Pseudorapidity η of the second jet.

We use the CTEQ6L1 and CTEQ6mE [68] parton dis-
tribution functions (PDF) for the LO and NLO, respec-
tively. The value of the strong coupling at the scale µ is
taken from the PDF set starting from the initial values in
Eq. (6). The jets are clustered by using the anti-kT algo-
rithm provided by the FastJet package [69–71] with the
following setup:

pt,j ≥ 20 GeV, |ηj | ≤ 4.0, R = 0.5 . (7)

The Higgs boson is treated as a stable on-shell particle,
without including any decay mode. To fix the factorization
and the renormalization scale we define

Ĥt =
√

M2
H + p2t,H +

∑

j

pt,j , (8)

where pt,H and pt,j are the transverse momenta of the
Higgs boson and the jets. The nominal value for the two

4

scales is defined as

µ = µR = µF = Ĥt , (9)

whereas theoretical uncertainties are assessed by vary-
ing simultaneously the factorization and renormalization
scales in the range

1

2
Ĥt < µ < 2Ĥt . (10)

The error is estimated by taking the envelope of the re-
sulting distributions at the different scales.

3.1. Results

Within our framework, we find the following total cross
sections for the process pp → Hjj in gluon fusion:

σLO[pb] = 1.90+0.58
−0.41 ,

σNLO[pb] = 2.90+0.05
−0.20 ,

where the error is obtained by varying the renormalization
and factorization scales as given in Eq. (9). The LO distri-
butions have been computed using 2.5 × 107 phase space
points, whereas all NLO distributions have been obtained
using 4.0×106 phase space points for the Born and the vir-
tual corrections and 5.0× 108 points for the real radiation
for each scale.
In Figs. 1 and 2, we present the distribution of the trans-

verse momentum pT of the Higgs boson and its pseudora-
pidity η, respectively. Both of them show a K-factor be-
tween the LO and the NLO distribution of about 1.5−1.6,
which is almost flat over a large fraction of kinematical
range. Furthermore both plots show a decrease of the scale
uncertainty of about 50%. Figures 3 and 4 display the
transverse momentum of the first and second jet, whereas
their pseudorapidities are shown in Figs. 5 and 6. The
previous considerations are also true for these latter plots.
For the transverse momentum distributions, however, we
observe a slight change of shapes. In the case of the lead-
ing jet, increasing the pT , the K-factor decreases from 1.6
to 1.4; while for the second leading jet, it increases from
1.4 to 1.6.

4. Virtual corrections to pp → Hjjj

We explore the possibility of extending our framework
to the production of a Higgs boson plus three jets at NLO.
The independent partonic processes contributing to

Hjjj can be obtained by adding one extra gluon to the
final state of the processes listed in Eq.(4). Accordingly,
we generate the codes for the virtual corrections to the
partonic processes with a quark-pair in the final state,

gg → Hqq̄g , qq̄ → Hqq̄g , qq̄ → Hq′q̄′g . (11)

The missing channel gg → Hggg, together with the phase
space integration, will be discussed in a successive study.

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g
q -q -> H q  -q  g

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g
q -q -> H q  -q  g
q -q -> H q’ -q’ g

Figure 7: Finite-term of the virtual matrix-elements for gg → Hqq̄g
(red), qq̄ → Hqq̄g (green), qq̄ → Hq′ q̄′g (blue).

We compute, for the first time, the virtual matrix ele-
ments for the three subprocesses listed above, and show
their results along a certain one-dimensional curve in the
space of final state momenta. We take the initial partons
to have momentum p1 and p2, whose 3-momenta lie along
the z-axis, and choose an arbitrary point for the final state
momenta {p3, p4, p5, p6}. For simplicity, we start with the
same phase space point used in the Appendix D (see Ta-
ble D.4). Then, we create new momentum configurations
by rotating the final state through an angle θ about the
y-axis. Figure 7 displays the behavior of the finite part a0
of the individual 2 → 4 amplitudes defined as

2Re {Mtree-level∗Mone-loop}
(4παs) |Mtree-level|2

≡
a−2

ε2
+

a−1

ε
+ a0 , (12)

when the final external momenta are rotated from θ = 0
to θ = 2π. The plots are obtained by sampling over 100
points.
Numerical values for the one-loop amplitudes of the pro-

cesses listed in (11) are collected in Appendix D.
Also in this case we verify that the values of the dou-

ble and the single poles conform to the universal singu-
lar behavior of dimensionally regulated one-loop ampli-
tudes [65].

5. Conclusions

We presented the calculation of the associated produc-
tion of a Higgs boson and two jets, pp → Hjj, at NLO in
QCD, employing the infinite top-mass approximation.
The results were obtained by using a fully automated

framework for fixed order NLO QCD calculations based
on the interplay of the packages GoSam and Sherpa, in-
terfaced through the BLHA standards. We discussed the
technical aspects of the computation, and showed the nu-
merical impact of the radiative corrections on the distribu-
tion of the transverse momentum of the Higgs boson and
its pseudorapidity, as well as of the transverse momentum
and pseudorapidity of the leading and second leading jet.
All plots show a K-factor between the LO and the NLO
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Higgs + 3 jets GF @ NLO: cross-section

Cross sections are obtained with a hybrid setup:
I GoSam + Sherpa for Born and of the virtual contributions
I

MadGraph+MadDipole+MadEvent for reals/subtraction/integrated dipoles
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xsection

3

employ a combination of MadGraph [42, 43] (matrix el-
ements), MadDipole [44, 45] (subtraction terms), and
MadEvent [46] (numerical integration). We verified the
independence of our result under the variation of the so
called α-parameter that fixes the amount of subtractions
around the divergences of the real corrections.
We first proved the consistency of our hybrid MC in-

tegration on pp → Hjj, verifying that the full cross sec-
tion at NLO agrees with the corresponding result for the
integration of both the virtual and the real corrections
obtained by the interplay of Sherpa and GoSam alone.
Moreover, for the process under consideration, namely
pp → Hjjj, we found excellent agreement betweenMad-
Graph and Sherpa for the LO cross section.

INTEGRATED CROSS SECTION

In the following, we present results for the integrated
cross section of Higgs boson plus three jets production at
the LHC, for a center-of-mass energy of 8 TeV. The mass
of the Higgs boson is set to mH = 125 GeV.
Jets are clustered using the antikt-algorithm imple-

mented in FastJet [47–49] with radius R = 0.5 and
a minimum transverse momentum of pT,jet > 20 GeV
and pseudorapidity |η| < 4.0. The LO cross section
is computed with the LO parton-distribution functions
cteq6L1, whereas at NLO we use cteq6mE [50].
Everywhere, but in the effective coupling of the Higgs

to the gluons, the renormalization and factorization
scales are set to

µF = µR =
ĤT

2
=

1

2

(

√

m2
H + p2T,H +

∑

i

|pT,i|

)

, (3)

where the sum runs over the final state jets. The strong
coupling is therefore evaluated at different scales accord-
ing to α5

s → α2
s(mH)α3

s(ĤT /2). The theoretical uncer-
tainties are estimated by varying the scales by factors
of 0.5 and 2.0 respectively. In the effective coupling the
scale is kept at mH . Within this setup we obtain the
following total cross section at LO and NLO:

σLO[pb] = 0.962+0.51
−0.31 , σNLO[pb] = 1.18+0.01

−0.22 .

The scale dependence of the total cross section, depicted
in Fig. 2, is strongly reduced by the inclusion of the NLO
contributions.
In Figs. 3 and 4, we show the pT distributions of the

three jets and of the Higgs boson, respectively. The NLO
corrections enhance all distributions for pT values lower
than 150− 200 GeV, whereas their contribution is neg-
ative at higher pT . This behavior is explicitly shown in
the lower part of Fig. 4 for the case of the Higgs boson.
This study also shows that the virtual contributions

for pp → Hjjj generated by GoSam can be successfully
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Figure 2. Scale dependence of the total cross section at LO
and NLO.
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Figure 3. Transverse momentum (pT ) distributions for the
first, second, and third leading jet.

paired with available Monte Carlo programs to aim at
further phenomenological analyses.
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APPENDIX: SELECTED RESULTS FOR THE

VIRTUAL CONTRIBUTIONS

The numerical values of the one-loop sub-amplitudes,
defined as

2Re {Mtree-level∗Mone-loop}

(αs/2π) |Mtree-level|2
≡

a−2

ε2
+

a−1

ε
+ a0 , (4)

and evaluated at the non-exceptional phase space point
given in Tab. II, are collected in Tab. III. The values of
the double and the single poles conform to the univer-
sal singular behavior of dimensionally regulated one-loop
amplitudes [39]. The precision of the finite parts is esti-
mated by re-evaluating the amplitudes for a set of mo-
menta rotated by an arbitrary angle about the axis of
collision.
In Fig. 5, we present the results for the finite part a0 of

the virtual matrix elements for the various subprocesses
calculated along a certain one-dimensional curve in the
space of final state momenta. Starting from the phase
space point in Tab. II, in which the initial partons lie
along the z-axis, we generate new configurations by ro-
tating the final state momenta by an angle θ ∈ [0, 2π]
about the y-axis.
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pp → tt̄H and pp → tt̄Hj at NLO QCD accuracy,
we also used the GoSam/Ninja+Sherpa framework
to compute the cross section for tt̄H production. We
found excellent agreement with the results presented in
Refs. [7, 47].

NUMERICAL RESULTS

In the following, we present results for the integrated
cross section for a center-of-mass energy of 8 TeV. The
mass of the Higgs boson is set to mH = 126 GeV
and the top quark mass is set to mt = 172.5 GeV.
The parameters of the electroweak sector are fixed by
setting MW = 80.419 GeV, MZ = 91.1876 GeV and
α−1
EW = 132.50698.
To cluster the jets we use the antikt-algorithm imple-

mented in FastJet [48–50] with radius R = 0.5, a mini-
mum transverse momentum of pT,jet > 15 GeV and pseu-
dorapidity |η| < 4.0. The LO cross sections are computed
with the LO parton-distribution functions cteq6L1 [51],
whereas at NLO we use CT10 [52].
In order to study the scale dependence of the total cross

section, we employ two different choices of the renormal-
ization and factorization scales µR = µF = µ0, namely
µ0 = HT and µ0 = 2×GAT with

HT =
∑

final
states f

|pT,f | , (2)

GAT = 3
√
mT,H mT,t mT,t̄ +

∑

jets j

|pT,j | . (3)

Within this setup, for the two scale choices, we obtain
the total LO and NLO cross sections reported in Table I.

Figure 4. Transverse momentum distribution of the Higgs
boson at LO and NLO for µ = HT .

Figure 5. Pseudorapidity η of the Higgs boson at LO and
NLO accuracy for µ = HT .

Central Scale σLO [fb] σNLO [fb]

2×GAT 80.03+35.64
−23.02 100.6+0.00

−9.43

HT 88.93+41.41
−26.13 102.3+0.00

−15.82

Table I. Total cross section for tt̄Hj for different choices of
the central scale at LO and NLO.

The scale dependence of the total cross section, de-
picted in Fig. 2, is strongly reduced by the inclusion of
the NLO contributions. It is worthwhile to notice that
both choices for the central value of the scale provide an
adequate description, being close to the physical scale of
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faster, 
higher accuracy,
more stable, 
no-problem with 
multiple masses

Subprocess Time/PS-point [ms]

pp ! Wjjj
dū ! ⌫̄ee

�ggg 226

pp ! Zjjj
dd̄ ! e+e�ggg 1911.4

pp ! tt̄bb̄ (mb 6= 0)
dd̄ ! tt̄bb̄ 178
gg ! tt̄bb̄ 5685

pp ! Wbb̄j (mb 6= 0)
ud̄ ! e+⌫ebb̄g 67

pp ! Hjjj (GF,mt ! 1)
gg ! Hggg 11266
gg ! Hguū 999
uū ! Hguū 157
uū ! Hgdd̄ 68

pp ! Hjjj (VBF)
uū ! Hguū 101

pp ! Hjjjj (VBF)
uū ! Hgguū 669
uū ! Huūuū 600
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2-loop 5-point amplitudes in N=4 SYM & N=8 Sugra
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FIG. 2: The six diagrams that appear in the five-point two-loop amplitudes.

respect to permutations of any four legs that connect to a box subgraph. This follows from

the kinematic Jacobi relations, since, triangles are obtained from the antisymmetrization of

any two legs in a box diagram. The absence of triangles is then equivalent to requiring total

symmetry of the box numerators. This explains why the numerator of diagram (B) in fig. 1

is totally symmetric in legs 3, 4 and 5. And, for two multiloop diagrams, which only differ

by the ordering of legs of a box subgraph, it follows that they have the same numerator. At

two loops this property implies the following constraints on the numerators:

N (a) = N (b), N (d) = N (e) = N (f) . (4.2)

This can easily be seen in fig. 2: diagram (a) and (b) only differ by the edge connections of the

rightmost one-loop subgraph, which is a box. Similarly, (d) differs from (e) by connections

in the rightmost one-loop subgraph, and (d) differs from (f) by connections in the leftmost

one-loop subgraph, both are boxes.

Further, the remaining undetermined numerators N (a), N (c) and N (d) are interlocked by

the two kinematic Jacobi relations,

N (c)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 5, 4, 3; p, k3,4 − q)−N (a)(5, 4, 3, 1, 2; k5 + q, k1,2 − p) ,

N (d)(1, 2, 3, 4, 5; p, q) = N (a)(1, 2, 3, 4, 5; p, q)−N (a)(2, 1, 3, 4, 5; p, q) , (4.3)
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Integrand reduction at NLO and beyond Tiziano Peraro

−

1

2 3

4

5

1

2

3

4

5
5

1

2

3

4

−

1

2 3

4

5

1

2

3

4

5

−

1

2

3

4

5

=

=

=

1

2

3

4

5

1

2 3

4

5

1

2 3

4

5

Figure 2: The eight- and sevenpole unitarity cut of the pentabox graph, which can be used to determine the
corresponding residues.

of the integrand, corrected by the contributions coming from higher-point residues. In other words,
with this approach the system of equations for the coefficients becomes diagonal and the subtrac-
tions of higher-point contributions can be implemented as corrections at the coefficient level which
replace the subtractions at the integrand level of the original algorithm. The parametric form of this
corrections can be computed once and for all, in terms of a subset of the higher-point coefficients.
This also allows to significantly reduce the number of coefficients entering in each subtraction. For
instance, box and pentagons do not affect at all the computation of lower-points residues.

This reduction algorithm has been implemented in the semi-numerical C++ library NINJA,
which has been interfaced with the package GOSAM [11, 12] for automated one-loop computa-
tions. Since the integrand of a loop amplitude is a rational function, its semi-numerical Laurent
expansion has been implemented as a simplified polynomial division between the numerator and
the denominators. The simplified fit of the coefficients and the subtractions at coefficient level
make the algorithm implemented in NINJA significantly lighter, faster and more stable than the
original. Moreover the extension of this approach to higher-rank integrands is particularly easy,
and indeed the library can also be used for the reduction of higher-rank integrands where the rank
of a numerator can exceed the number of denominators by one.

The first new phenomenological application of NINJA has been the computation of NLO QCD
corrections to Higgs boson production in association with a top quark pair and a jet [13]. The pos-
sibility of exploiting the improved stability of the new algorithm has been especially important for
the computation of the corresponding six-point virtual amplitude, given the presence of two mass
scales as well as massive loop propagators which make traditional integrand reduction algorithms
numerically unstable. Indeed, for the highly non-trivial process under consideration, only a num-
ber of phase-space points of the order of one per mill were detected as unstable. All these points
have been recovered using the tensorial reduction provided by GOLEM95 [21, 22], thus avoiding
the necessity of higher precision routines, which are extremely time consuming.

4. Application to Two-Loop Scattering Amplitudes in N = 4 SYM

The integrand reduction within the fit-on-the-cut approach has been combined with the color-
kinematic duality [25] to construct the two-loop five-point amplitude for N =4 super Yang-Mills
(sYM) [26].
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Figure 4: Each seven-pole unitarity cut is split into two contributions as indicated by the colors. The green
diagram represents the new seven-denominator topology arising from the BCJ equations.

The input for the integrand decomposition are, on the one-side, the products of the trees to
be sewn along the multiple-cuts, and on the others the parametric residues and solutions of the
multiple-cuts. The former can be computed by adopting the super-amplitude formalism [28], while
the latter were classified in [27].

The reduction of the amplitude, in this case, begins from the eight-pole cuts, which is a
maximum-cut [8], and terminates after determining the residues at the sevenpole-cuts. The ab-
sence of lower cuts is compatible with the properties that N = 4 sYM integrands are linear in the
loop-momenta. Representative steps of the reduction are given in Fig. 2.

Once the reduction is completed, one can equivalenty construct a numerator function for the
parent eight-denominator topologies, which capture the whole structure of the scattering ampli-
tude. These numerators can be rearranged in a color-kinematic dual form by imposing additional
constraints, referred to as BCJ equations, derived from the the kinematical equivalent of the Jacobi
Identity portrayed in Fig. 3. BCJ identities, beyond one-loop, imply a relation between the inte-
grands of the planar and of the non-planar topologies. The color-kinematic dual numerator for the
eight-denominator planar diagram is represented in the first line of Fig.5. The key equations for
the determination of the new numerators of the planar diagrams are depicted in Figs. 4, where one
may notice the rising of a seven-denominator diagram, whose identification was not needed in the
unitarity decomposition. In order to disentangle the contributions to the sevenpole cuts we use the
BCJ equations which only involve the planar topologies displayed in the last two lines of Fig. 5.
The obtained results are in agreement with [29].

5. Conclusions

We described a coherent framework for the decomposition of Feynman integrals, which can
be applied at any loop order, regardless of the complexity of the integrand, the number of external
legs or the presence of higher powers of loop denominators. This framework allows to easily derive
well known results at one-loop order and extend them to higher loops.

In the one-loop case, we showed how the knowledge of the analytic structure of the integrands
on the multiple cuts, and in particular their asymptotic behaviour on the on-shell solutions, can
be used to improve the analytic reduction with the Laurent expansion method. Its implementation
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kinematic term of scattering amplitudes fulfills the same algebra as 
the color term
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in the C++ library NINJA provided a considerable gain in the speed and in the stability of the
reduction.

At higher loops, we showed the application of the integrand decomposition both within the
fit-on-the-cut approach and the divide-and-conquer approach. With the former the residues are
evaluated on the corresponding multiple cuts and we showed an application in N = 4 SYM using
the super-amplitude formalism. Using the latter we can instead perform the full decomposition with
purely algebraic operations on the numerator and the set of denominators of a given integrand. We
applied it to simple examples, some of which cannot be addressed with other unitarity-based and
integrand-reduction methods, due to the presence of higher powers of loop denominators in the
integrands. The algebraic reduction also allows to avoid the determination of the algebraic variety
defined by the on-shell solutions, which is a non-trivial task especially for those multiple cuts which
leave several unconstrained variables.
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Figure 4: Each seven-pole unitarity cut is split into two contributions as indicated by the colors. The green
diagram represents the new seven-denominator topology arising from the BCJ equations.

The input for the integrand decomposition are, on the one-side, the products of the trees to
be sewn along the multiple-cuts, and on the others the parametric residues and solutions of the
multiple-cuts. The former can be computed by adopting the super-amplitude formalism [28], while
the latter were classified in [27].

The reduction of the amplitude, in this case, begins from the eight-pole cuts, which is a
maximum-cut [8], and terminates after determining the residues at the sevenpole-cuts. The ab-
sence of lower cuts is compatible with the properties that N = 4 sYM integrands are linear in the
loop-momenta. Representative steps of the reduction are given in Fig. 2.

Once the reduction is completed, one can equivalenty construct a numerator function for the
parent eight-denominator topologies, which capture the whole structure of the scattering ampli-
tude. These numerators can be rearranged in a color-kinematic dual form by imposing additional
constraints, referred to as BCJ equations, derived from the the kinematical equivalent of the Jacobi
Identity portrayed in Fig. 3. BCJ identities, beyond one-loop, imply a relation between the inte-
grands of the planar and of the non-planar topologies. The color-kinematic dual numerator for the
eight-denominator planar diagram is represented in the first line of Fig.5. The key equations for
the determination of the new numerators of the planar diagrams are depicted in Figs. 4, where one
may notice the rising of a seven-denominator diagram, whose identification was not needed in the
unitarity decomposition. In order to disentangle the contributions to the sevenpole cuts we use the
BCJ equations which only involve the planar topologies displayed in the last two lines of Fig. 5.
The obtained results are in agreement with [29].

5. Conclusions

We described a coherent framework for the decomposition of Feynman integrals, which can
be applied at any loop order, regardless of the complexity of the integrand, the number of external
legs or the presence of higher powers of loop denominators. This framework allows to easily derive
well known results at one-loop order and extend them to higher loops.

In the one-loop case, we showed how the knowledge of the analytic structure of the integrands
on the multiple cuts, and in particular their asymptotic behaviour on the on-shell solutions, can
be used to improve the analytic reduction with the Laurent expansion method. Its implementation

6
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Jacoby identity for trees

integrand-reduction 

Schubert & P.M. 

confirming the result of Carrasco & Johansson
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3

+ bN
i1···i1 ··· in···incJi1i2···in

. (5)

The normal form of the numerator is not in the ideal J ,
thus it cannot be expressed in terms of the denominators
and it is identified with the residue of the multiple cut
D

a1
i1

= · · · = D

an
in

= 0,

bN
i1···i1 ··· in···incJi1i2···in

= �
i1···i1 ··· in···in , (6)

belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as

�
i1···i1 ··· in···in =

nX

k=1

Ni1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

D

ik . (7)

Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain

Ii1 · · · i1
| {z }

a1

... in · · · in
| {z }

an

=
nX

k=1

Ii1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

+

+
�

i1···i1 ··· in···in
D

a1
i1

· · ·Dak
in

, (8)

which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a

n

times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 12, 13].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [14]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄

i

are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄

i

=
q

i

+ ~µ

i

, with q

i

· ~µ
j

= 0 and ~µ

i

· ~µ
j

⌘ µ

2
ij

. In this case the
variables z are µ

2
11, µ

2
22, µ

2
12 and the components of q

i

in
the basis {k, k?, e3, e4}, such that

k

2
? 6= 0 6= e3 · e4 , k · k? = k · e

j

= k? · e
j

= e

2
j

= 0 .

Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.

The integrand of the diagram (a) is

I(a)
12345 =

1

3� 2 ✏

N (a)
12345

D1D2D3D4D5
, (9)

while its denominators are

D1 = q̄

2
1 �m

2
, D2 = (q̄1 + k)2 �m

2
,

D3 = q̄

2
2 �m

2
, D4 = (q̄2 + k)2 �m

2
,

D5 = (q̄1 � q̄2)
2
.

According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as

N (a)
12345 =�12345 +N1235D4 +N2345D1 +N1345D2

+N1245D3 +N1234D5 . (10)

In the second step, the numerators N
i1i2i3i4 are reduced

performing the division N
i1i2i3i4/Gi1i2i3i4 ,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +N123D4D5

+N124D3D5 +N134D2D5 +N234D1D5

+N125D3D4 +N135D2D4 +N245D1D3

+N345D1D2 +N145D2D3 +N235D1D4 . (11)

The complete decomposition of N (a)
12345 is obtained by it-

erating the procedure twice,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +�123D4D5

+�124D3D5 +�134D2D5 +�234D1D5

+�125D3D4 +�135D2D4 +�245D1D3

+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,
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5.1.10 Algebre di Lie. Un’algebra di Lie g è uno spazio vettoriale con un’applicazione
bilineare alternante

g⇥ g �! g, (X, Y ) 7�! [X, Y ]

che soddisfa l’identità di Jacobi (vedi qui sopra).
Esempi di algebre di Lie sono gli spazi tangenti TeG, dove e è l’elemento neutro di un gruppo

di Lie G (vedi 5.1.9) e gli spazi vettoriali X (M) (di dimensione infinita!) dei campi vettoriali
su una varietà di↵erenziabile (vedi 4.3.11).

5.1.11 L’applicazione esponenziale. Dato un X 2 g, X 6= 0, si può mostrare che esiste un
unico cammino

� = �X : R �! G, t.c. �⇤ = X, �(s + t) = �(s)�(t) (8s, t 2 R),

cioè � è omomorfismo di gruppi di Lie.
L’applicazione esponenziale è definita da:

exp : g �! G, exp(tX) := �X(t),

quindi la restrizione di exp alla retta < X >⇢ g è un omomorfismo per ogni X 2 g. In più si
ha che

(d exp)
0

: T
0

g = g �! TeG = g

è l’identità. L’applicazione exp è l’unica applicazione con queste due proprietà. Se G è connesso,
si può mostrare che G è generato da exp(U), dove U ⇢ g è un intorno aperto di 0 2 g.

Se G è un sottogruppo di Lie di GL(n, R), allora g ⇢ M(n, R) e si ha la formula esplicita:

exp tX =
1

X

k=0

tkXk

k!
, (X 2 M(n, R) = TeGL(n, R)).

Si noti che si ha proprio �⇤ := (d/dt) exp tX)t=0

= X.
In generale non vale exp(X + Y ) = (exp X)(exp Y ) perché XY 6= Y X. La formula di

Campbell-Baker-Haussdorf dà una formula per (exp X)(exp Y ) come exp di una somma di
commutatori tra X e Y :

(exp X)(exp Y ) = exp(X + Y + (1/2)[X,Y ] + (1/12)[X, [X, Y ]]� (1/12)[Y, [X, Y ]] + . . .).

Per calcolare l’exp è spesso utile usare che exp(SXS�1) = S(exp(X))S�1 (che segue dalla
serie per exp), quindi la forma di Jordan di X determina essenzialmente exp(X).

Si può mostrare che poiché (d exp)
0

è un isomorfismo, l’immagine della mappa esponenziale
contiene un aperto U di G tale che e 2 U . La formula qui sopra mostra che il prodotto µ in
un tale aperto di G è determinato dal prodotto nell’algebra di Lie g. Questo ci permette di
mostrare che un’algebra di Lie g di dimensione finita determina in modo unico un gruppo di
Lie G che è connesso e semplicemente connesso. Queste condizioni su G sono importanti, per
esempio l’algebra di Lie g = R (con prodotto banale) è l’algebra di Lie di R⇤ = R � {0} (non
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Ojk(s) = pj,µ ·
N
∑

α=1

∂sα

∂pk,µ

∂M(s)

∂sα
=

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
. (33)

According to the available number of the kinematic invariants, the r.h.s. of Eq. (32) and the r.h.s.
of Eq. (33) may be equated to form the following system

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
= pj,µ

∂M(s)

∂pk,µ
, (34)

which can be solved in order to express ∂M(s)
∂sα

in terms of pj,µ
∂M(s)
∂pk,µ

, so the corresponding identity,
can be finally read as a differential equation for M .
Examples of such equations are the following.

• 2-point case.
• Differentiation with respect to a mass

∂

∂m2

{

p p

}

= −
{

p p

}

(35)

where, for simplicity, we assumed there is just one propagator of mass m.
• Differentiation with respect to the squared momentum

p2 ∂

∂p2

{

p p

}

=
1

2
pµ

∂

∂pµ

{

p p

}

(36)

• 3-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

}

=

=

[

A

(

p1,µ
∂

∂p1,µ
+ p2,µ

∂

∂p2,µ

)

+ B

(

p1,µ
∂

∂p2,µ
+ p2,µ

∂

∂p1,µ

)]{ p1

p2

p3

}

,

(37)

with P = p1 + p2 and A, B rational coefficients.

• 4-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

p4

}

=

[

C

(

p1,µ
∂

∂p1,µ
− p3,µ

∂

∂p3,µ

)

+ Dp2,µ
∂

∂p2,µ
+

+ E(p1,µ + p3,µ)

(
∂

∂p3,µ
− ∂

∂p1,µ
+

∂

∂p2,µ

)]{ p1

p2

p3

p4

}

, (38)
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+
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Q2 ∂

∂Q2

{ p1

p2

p3

p4

}

=

[

F

(

p1,µ
∂

∂p1,µ
− p2,µ

∂

∂p2,µ

)

+ Gp2,µ
∂

∂p2,µ
+

+ H(p2,µ − p1,µ)

(
∂

∂p1,µ
+

∂

∂p2,µ
+

∂

∂p3,µ

)]{ p1

p2

p3

p4

}

, (39)

with P = p1 + p2, Q = p1 − p3 and C, D, E, F, G, H rational coefficients.

Equation (34) holds for any function M(s). In particular, let us assume that M(s) is a master integral.
We can now substitute the expression of M in the r.h.s. of one of the Eqs.(36-39), according to the
case, and perform the direct differentiation of the integrand. It is clear that we obtain a combination
of several integrals, all belonging to the same topology as M . Therefore, we can use the solutions of
the IBP-id’s, LI-id’s and other identities for that topology and express everything in terms of the
MI’s of the considered topology (and its subtopologies). If there is more than one MI, the procedure
can be repeated for all of them as well. In so doing, one obtains a system of linear differential
equations in s for M and for the other MI’s (if any), expressing their s-derivatives in terms of the
MI’s of the considered topology and of its subtopologies.

The system is formed by a set of first-order differential equations (ODE), one for each MI, say
Mj , whose general structure reads like the following,

∂

∂sα
Mj(D, s) =

∑

k

Ak(D, s) Mk(D, s) +
∑

h

Bh(D, s) Nh(D, s) (40)

where α = 1, · · · ,N , is the label of the invariants, and Nk are MI’s of the subtopologies. Note
that the above equations are exact in D, and the coefficients Ak, Bk are rational factors whose
singularities represent the thresholds and the pseudothresholds of the solution.
The system of equations (40) for Mj is not homogeneous, as they may involve MI’s of subtopologies.
It is therefore natural to proceed bottom-up, starting from the equations for the MI’s of the simplest
topologies (i.e. with less denominators), solving those equations and using the results within the
equations for the MI’s of the more complicated topologies with additional propagators, whose non-
homogeneous part can then be considered as known.

4.2. Boundary conditions

The coefficients of the differential equations (40) are in general singular at some kinematic points
(thresholds and pseudothresholds), and correspondingly, the solutions of the equations can show
singular behaviours in those points, while the unknown integral might have not. The boundary
conditions for the differential equations are found by exploiting the known analytical properties of
the MI’s under consideration, imposing the regularity or the finiteness of the solution at the pseudo-
thresholds of the MI. This qualitative information is sufficient for the quantitative determination
of the otherwise arbitrary integration constants, which naturally arise when solving a system of
differential equations.
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From here it is easy to deduce that every τ ∈ Tm, m ≥ 1, can be written in a
unique way as

τ = !"

τ1
!"

τ2
!

τ3
!"

!

τs

..
..

or τ ≡ a(τ1, τ2, . . . , τs). Then the Magnus expansion can be expressed in the
form [119,120]

Ω(t) =
∞∑

m=0

∑

τ∈Tm

α(τ)
∫ t

0
Hτ (ξ)dξ, (61)

with the scalar α( !) = 1 and, in general,

α(τ) =
Bs

s!

s∏

l=1

α(τl).

Let us illustrate this procedure by writing down explicitly the first terms in
the expansion in a tree formalism. In T1 we only have k1 = k2 = 0, so that a
single tree is possible,

τ1 = ! , τ2 = ! , ⇒ τ = !"

!

!

,

with α(τ) = −1/2. In T2 there are two possibilities, namely k1 = 0, k2 = 1
and k1 = 1, k2 = 0, and thus one gets

τ1 = ! , τ2 = !"

!

!

⇒ τ = !"
!"

!

!

!

, α(τ) = 1
12

τ1 = !"

!

!

, τ2 = ! ⇒ τ = !"

!"

!

!

!

α(τ) = 1
4

and the process can be repeated for any Tm. The correspondence between trees
and expansion terms should be clear from the previous graphs. For instance,
the last tree is nothing but the integral of A, commuted with A, integrated and
commuted with A. In that way, by truncating the expansion (61) at m = 2
we have

Ω(t) =
!

−
1

2

!"

!

!

+
1

4

!"

!"

!

!

!

+
1

12

!"
!"

!

!

!

+ · · · , (62)

i.e., the explicit expressions collected in subsection 2.2.
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Iterated integrals and rooted trees

solution: Matrix Exponential & Iterated Integrals

System of 1st ODE

............

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(y) = εH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= εH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (2.6)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.

3. Magnus series expansion

Consider a generic linear matrix differential equation [17]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (3.1)

If A(x) commutes with its integral
∫ x
x0

dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0

dτA(τ)
Y0 . (3.2)
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A(x) non-commutativeIn the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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The matrices Q(j)
n are defined as

Q(j)
n =

n−j+1
∑

m=1

Q(1)
m Q(j−1)

n−m , Q(1)
n ≡ Ωn , Q(n)

n ≡ Ωn
1 . (3.9)

In the following, we will use both Magnus and Dyson series. The former allows us to

easily demonstrate how a system of DE’s, whose matrix is linear in ε, can be cast in the

canonical form. The latter can be more conveniently used for the explicit representation

of the solution.

4. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂xf(ε, x) = A(ε, x) f(ε, x) , (4.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and

masses. We suppose that A depends linearly on ε,

A(ε, x) = A0(x) + εA1(x) , (4.2)

and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,

f(ε, x) = B0(x) g(ε, x) , B0(x) ≡ eΩ[A0](x,x0) . (4.3)

Using Eq. (A.13), one can show that B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (4.4)

which, analogously to the quantum-mechanical case, Eq. (2.5), implies that the new basis

g of MI’s fulfills a system of differential equations in the canonical factorized form,

∂xg(ε, x) = εÂ1(x)g(ε, x) . (4.5)

The matrix Â1 is related to A1 by a similarity map,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (4.6)

and does not depend on ε. The solution of Eq. (4.5) can be found by using the Magnus

theorem with εÂ1 as kernel

g(ε, x) = B1(ε, x)g0(ε) , B1(ε, x) = eΩ[εÂ1](x,x0) , (4.7)

where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution

of the original system Eq. (4.1) finally reads,

f(ε, x) = B0(x)B1(ε, x)g0(ε) . (4.8)
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g(ε, x) = B1(ε, x)g0(ε) , B1(ε, x) = eΩ[εÂ1](x,x0) , (4.7)
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change of basis :: Magnus #1

Canonical form Henn (2013)
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Schlenk, Schubert, Tancredi, P.M. (2014)

Solution :: Magnus #2 (or Dyson)

Uniform Transcendentality!

Feynman integrals can be determined from differential equations that looks like 
gauge transformations



p1

p2

p1 − k1

−p2 − k2

Figure 3: Selection of Feynman diagrams entering the correction of the QED vertex at two loops.
The internal momenta in the first diagram are oriented according to the fermion flow, while the
external momenta are incoming.

M7 =















0 0 0 0 0

0 0 0 0 0
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. (5.12)

The position of the non-zero entries of the sparse matrices Mi agree with the result obtained

in Ref. [13]. The actual value of the non-zero entries, however, are different, owing to the

different normalization of the elements of the basis of MI’s. The solution of the system (5.8)

can be computed along the lines of Ref. [13]. In particular, the solution is computed in the

Euclidean region 0 < x, y < 1 by using the analytic structures of the gi and then extended

in the physical region by analytic continuation [26].

6. Two-Loop QED Vertices

A set of MI’s entering the electron form factor at two loop in QED [19] were computed in

Ref. [18], for arbitrary kinematic and finite electron mass. The contributing diagrams are

depicted in Fig. 3 and depend on s = (p1 + p2)2 and p21 = p22 = m2. In this example we

choose an alternative set of MI’s,

f1 = ε2T1 , f2 = ε2T2 , f3 = ε2T3 , f4 = ε2T4 , f5 = ε2T5 ,

f6 = ε2T6 , f7 = ε2T7 , f8 = ε3T8 , f9 = ε3T9 , f10 = ε2T10 ,

f11 = ε3T11 , f12 = ε3T12 , f13 = ε2T13 , f14 = ε3T14 , f15 = ε4T15 ,

f16 = ε4T16 , f17 = ε4T17 , (6.1)

where the integrals Ti are collected in Fig. 4. The system of differential equation for f , in

the auxiliary variable x, defined through

s = −
m2(1− x)2

x
, (6.2)

is linear in ε,

∂xf(ε, x) = A(ε, x) f(ε, x) , A(ε, x) = A0(x) + εA1(x) . (6.3)
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T1

p12

T2(s)

p12

T3(s)

p1

T4

p12

T5(s)

p12

T6(s)

p2

T7

p1

p2

T8(s)

p1

p2

T9(s)

p1

p2

T10(s)
p1

p2

T11(s)

p1

p2

T12(s)

p1

p2

T13(s)

p1

p2

T14(s)

p1

p2

T15(s)

[(k1 + k2)2]

p1

p2

T16(s)

p1

p2

T17(s)

Figure 4: MI’s for the two-loop corrections of the QED vertex. All the external momenta depicted
are incoming. In the integral T16 the loop momenta k1, k2 are fixed according to the first diagram
of Fig. 3 and a term (k1+k2)2 has to be included in the numerator of the integrand. A dot indicates
a squared propagator.
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The canonical form can be obtained performing the transformation described in Section 4,

f(ε, x) = B0(x) g(ε, x), B0(x) = eΩ[A0](x) . (6.4)

The new basis g is given by

g1 = f1 , g2 = λ1f2 ,

g3 = (−s)λ2f3 , g4 = m2f4 ,

g5 = λ1

(

f5 +
f6
2

)

−
s

2
f6 , g6 = (−s)f6 ,

g7 = m2f7 , g8 = λ1f8 ,

g9 = λ1f9 , g10 = λ3 (2f5 + f6) +m2λ2f10 ,

g11 = λ1f11 , g12 = λ1f12 ,

g13 = 3
(

m2 −
s

2

)

f7 − sλ2f13 , g14 = (−s)λ2f14 ,

g15 = λ1f15 , g16 = λ1f16 ,

g17 = (−s)λ2f17 , (6.5)

where

λ1 =
√
−s
√

4m2 − s , λ2 = (4m2 − s) , λ3 =
λ1 + λ2

4
. (6.6)

The new basis of MI’s obeys a system of DE’s in the canonical form,

∂xg(ε, x) = εÂ1(x)g(ε, x) , Â1(x) =
M1

x
+

M2

1 + x
+

M3

1− x
, (6.7)

with

M1 =
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1− x
, (6.7)
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Figure 4: MI’s for the two-loop corrections of the QED vertex. All the external momenta depicted
are incoming. In the integral T16 the loop momenta k1, k2 are fixed according to the first diagram
of Fig. 3 and a term (k1+k2)2 has to be included in the numerator of the integrand. A dot indicates
a squared propagator.
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p4

Figure 5: Non-planar two-loop diagram with massless internal propagators, and massless external
particles. The internal momenta shown in the diagram are oriented according to the arrows. All
the external momenta are incoming.
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. (6.8)

The solution of the system can be expressed as Dyson series, as well as Magnus series,

in terms of one-dimensional Harmonic Polylogarithms (HPL’s) [27]. The requirements

that the MI’s are real-valued in the Euclidean region and regular in x = 1 (s = 0), or

simply the matching against the known integrals at x = 1, fix all but three boundary

conditions, corresponding to the constant MI’s g1, g4 and g7 (that do not depend on x).

The integrals g1 and g4 can be easily computed by direct integration, while g7 can be

determined from the results of Ref. [28]. Our results were checked numerically, using the

code HPL [29, 30], against the results available in the literature [18]. The expressions of

the transcendentally homogenous MI’s g are shown in Appendix B, and collected in the

ancillary file <vertex2L.m>.

7. Two-Loop non-planar Box

The evaluation of the two-loop non-planar box diagram in Fig. 5, contributing to to the

2 → 2 scattering among massless particles, has already been considered in the literature

[20,21]. Recently, for its planar partner, a set of MI’s with homogenous transcendentality

was presented in Ref. [11]. In this section, we compute the additional MI’s required for

determining the non-planar contribution, having expressions with manifest homogenous

transcendentality as well.

– 13 –

p1

p2

p1 − k1

−p2 − k2

Figure 3: Selection of Feynman diagrams entering the correction of the QED vertex at two loops.
The internal momenta in the first diagram are oriented according to the fermion flow, while the
external momenta are incoming.
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. (5.12)

The position of the non-zero entries of the sparse matrices Mi agree with the result obtained

in Ref. [13]. The actual value of the non-zero entries, however, are different, owing to the

different normalization of the elements of the basis of MI’s. The solution of the system (5.8)

can be computed along the lines of Ref. [13]. In particular, the solution is computed in the

Euclidean region 0 < x, y < 1 by using the analytic structures of the gi and then extended

in the physical region by analytic continuation [26].

6. Two-Loop QED Vertices

A set of MI’s entering the electron form factor at two loop in QED [19] were computed in

Ref. [18], for arbitrary kinematic and finite electron mass. The contributing diagrams are

depicted in Fig. 3 and depend on s = (p1 + p2)2 and p21 = p22 = m2. In this example we

choose an alternative set of MI’s,

f1 = ε2T1 , f2 = ε2T2 , f3 = ε2T3 , f4 = ε2T4 , f5 = ε2T5 ,

f6 = ε2T6 , f7 = ε2T7 , f8 = ε3T8 , f9 = ε3T9 , f10 = ε2T10 ,

f11 = ε3T11 , f12 = ε3T12 , f13 = ε2T13 , f14 = ε3T14 , f15 = ε4T15 ,

f16 = ε4T16 , f17 = ε4T17 , (6.1)

where the integrals Ti are collected in Fig. 4. The system of differential equation for f , in

the auxiliary variable x, defined through

s = −
m2(1− x)2

x
, (6.2)

is linear in ε,

∂xf(ε, x) = A(ε, x) f(ε, x) , A(ε, x) = A0(x) + εA1(x) . (6.3)
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g(1)14 = 0 , (B.14b)
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Figure 5: Non-planar two-loop diagram with massless internal propagators, and massless external
particles. The internal momenta shown in the diagram are oriented according to the arrows. All
the external momenta are incoming.
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The solution of the system can be expressed as Dyson series, as well as Magnus series,

in terms of one-dimensional Harmonic Polylogarithms (HPL’s) [27]. The requirements

that the MI’s are real-valued in the Euclidean region and regular in x = 1 (s = 0), or

simply the matching against the known integrals at x = 1, fix all but three boundary

conditions, corresponding to the constant MI’s g1, g4 and g7 (that do not depend on x).

The integrals g1 and g4 can be easily computed by direct integration, while g7 can be

determined from the results of Ref. [28]. Our results were checked numerically, using the

code HPL [29, 30], against the results available in the literature [18]. The expressions of

the transcendentally homogenous MI’s g are shown in Appendix B, and collected in the

ancillary file <vertex2L.m>.

7. Two-Loop non-planar Box

The evaluation of the two-loop non-planar box diagram in Fig. 5, contributing to to the

2 → 2 scattering among massless particles, has already been considered in the literature

[20,21]. Recently, for its planar partner, a set of MI’s with homogenous transcendentality

was presented in Ref. [11]. In this section, we compute the additional MI’s required for

determining the non-planar contribution, having expressions with manifest homogenous

transcendentality as well.
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The solution of the system can be expressed as Dyson series, as well as Magnus series,

in terms of one-dimensional HPL’s [27]. All MI’s have been computed in the scattering

kinematics, i.e. s > 0, t < 0, u < 0 with |s| > |t|, which gives 0 < x < 1. As long

as the planar sub topologies are concerned, one can fix the boundary conditions using the

regularity properties of the integrals in some special kinematical points. On the other hand,

the analyticity structure of the crossed box is more complicated, since it involves at the

same time cuts in all three Mandelstam variables s, t, u. Nevertheless, in this particular

case, the boundaries can be fixed by direct comparison with the results presented in [20,21].

The expressions of the transcendentally homogenous MI’s g are shown in Appendix C, and

collected in the ancillary file <xbox2L.m>.

8. Polynomial ε dependence

The cases discussed above admitted an initial choice of MI’s f obeying a system of dif-

ferential equations linear in ε. We cannot be sure that this feature is general, and holds

for any scattering process in dimensional regularization. Neverthless, the use of Magnus

series enable us to generalize our algorithm to the case of systems of DE’s whose matrix is

– 15 –

The integrals, in this case, are functions of the invariants s = (p1+p2)2, t = (p1+p3)2,

and u = (p2 + p3)2, with p2i = 0, and s+ t+ u = 0.

We adopt the following initial choice of MI’s,

f1 = ε2 s Ta(s) , f2 = ε2 t Ta(t) , f3 = ε2 u Ta(u) ,
f4 = ε3 s Tb(s) , f5 = ε3 s t Tc(s, t) , f6 = ε3 s u Tc(s, u) ,
f7 = ε4 u Td(s, t) , f8 = ε4 s Td(t, u) , f9 = ε4 t Td(u, s) ,
f10 = ε4 s2 Te(s) ,

f11 = ε4 s t u Tf (s, t)−
3

4 s (4ε + 1)

[

ε2
(

s2 Ta(s) + t2 Ta(t) + u2 Ta(u)
)

− 4ε4
(

u2 Td(s, t) + s2 Td(t, u) + t2 Td(u, s)
)]

,

f12 = ε4 s t Tg(s, t)−
3

8u (4ε + 1)

[

ε2
(

s2 Ta(s) + t2 Ta(t) + u2 Ta(u)
)

− 4ε4
(

u2 Td(s, t) + s2 Td(t, u) + t2 Td(u, s)
)]

, (7.1)

where the integrals Ti correspond to the diagrams in Fig. 6. We notice that the integrals

f1, . . . , f9 are common to the two-loop planar box diagram [11]. The set f of MI’s obeys a

system of differential equations the variable x, defined as,

x = −
t

s
, (7.2)

which is linear in ε. According to the procedure in Section 4, we can build the matrix

B0(x) ruling the change of basis f(ε, x) = B0(x)g(ε, x), so that the new MI’s,

gi = fi , i = 1, . . . , 10 ,

g11 =
s

8 t u

[

3f1(3 t− 5u)− 3f2(t+ 4u) + 3f3(2 t+ u)− 16f5 u+ 8f6 t

− 60f7 u− 12f8(t− u) + 36f9 t− 8f11 u− 8f12 u
]

,

g12 =
s

8u
(9f1 − 3f2 + 6f3 + 8f6 − 12f8 + 36f9) + f12 , (7.3)

obey the canonical system,

∂xg(ε, x) = εÂ1(x)g(ε, x) , Â(x) =
M1

x
+

M2

1− x
, (7.4)

with

M1 =
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,
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The solution of the system can be expressed as Dyson series, as well as Magnus series,

in terms of one-dimensional HPL’s [27]. All MI’s have been computed in the scattering

kinematics, i.e. s > 0, t < 0, u < 0 with |s| > |t|, which gives 0 < x < 1. As long

as the planar sub topologies are concerned, one can fix the boundary conditions using the

regularity properties of the integrals in some special kinematical points. On the other hand,

the analyticity structure of the crossed box is more complicated, since it involves at the

same time cuts in all three Mandelstam variables s, t, u. Nevertheless, in this particular

case, the boundaries can be fixed by direct comparison with the results presented in [20,21].

The expressions of the transcendentally homogenous MI’s g are shown in Appendix C, and

collected in the ancillary file <xbox2L.m>.
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The cases discussed above admitted an initial choice of MI’s f obeying a system of dif-

ferential equations linear in ε. We cannot be sure that this feature is general, and holds

for any scattering process in dimensional regularization. Neverthless, the use of Magnus

series enable us to generalize our algorithm to the case of systems of DE’s whose matrix is
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intial set of MI’s

after rotation
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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A b s t r a c t :  A general method of finding the singularities of quantum field theory values on the 
basis of graph techniques is evolved. 

1. Introduction 

In recent years many papers have been concerned with dispersion rela- 
tions. As is known, the latter express the analytic properties of various 
quantities of quantum field theory. The problem of localizing the singulari- 
ties of these quantities is therefore highly important. As has become clear 
recently 1,,), a direct study of graphs is the most effective method of in- 
vestigating the location and nature of the singularities of vertex parts. 
It  is often claimed that  the graph technique is not sufficiently convincing, since 
it involves perturbation theory, unlike other, allegedly more rigorous 
methods. This view is actually based on misunderstanding. Since a rigorous 
theory which makes use of the Hamiltonian reduces interaction to zero, 
the sole completely rigorous dispersion relation in this theory is 0 = 0. 
By posing the problem of analytic properties of quantum field values, we 
actually go beyond the framework of the current theory. An assumption is 
thereby automatically made that there exists a non-vanishing theory in 
which ~-operators and Hamiltonians are not employed, yet graph techniques 
are retained. In evolving dispersion relations, therefore, the employment of 
the graph technique is, indeed, solely consistent, since the problem becomes 
meaningless if the graph technique is rejected. 

The graph technique is by no means equivalent to perturbation theory, 
since all particles, stable as regards strong interactions, are considered, 
whether they are "simple" or "complex". In fact, first steps are thereby 
taken towards new graph techniques, which will be a generalization of the 
previous methods and will lay the foundation of the future theory. It  stands 
to reason that  the applicability of the graph technique of this type is likewise 
hypothetical and a test of successive results will be a test of the hypothesis 
itself. 

181 

Residues’ classification complementary to Landau’s singularity 
classification

Conclusions 
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 Pheno applications

main achievements:
Higgs production in association with jets and heavy-quarks at NLO

GoSam, Samurai, Ninja: multi-process automatic NLO calculations 



OutLoo(k/p) 

GoSam2.0 @ LHC
New integrand generator (5D-unitarity)

Combining Integrand Reduction & Integration-by-parts

EW and massive particles

One-Loop

a new horizon: Automating the integrand reduction analytically

Beyond One-Loop

Master Integrals from Magnus exponential

QFT finiteness: KLN-theorem @ the integrand level

a driving question:

pp-->H+2 at NNLO
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Scattering in N=4 sYMScattering 
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