

Results from Beam Test of the CaloCube Prototype

Vannuccini Elena On behalf of the CaloCube collaboration The prototype: active material

•CsI(Tl) scintillating crystals (produced by Amcrys)
•3×3×14=126 cubic elements
•3.6 cm side + 0.3 cm gap
•active depth 27 X₀→1.44 λ_I

The prototype: sensors & front-end electronics

Excelitas VTH2090 photodiodes

- Large area (9.2×9.2mm²)
- **CASIS chip** (developed by INFN-Trieste)
 - Very large dynamic range (0÷10000 MIP)
 - Automatic switching btw low and high (×20) gain mode
 - 16 channels (CSA+CDS shaper)

Setup of Feb 2013 Beam Test

- ▶ Ion beam extracted from CERN SPS H8 line
- Primary Pb beam on Be target
- > Nuclear fragments A/Z=2, from Deuterium to Iron
- Energy: **12.8** and **30.0 GeV/amu**

Z-tagging with Beam Tracker (BT)

Deuterium 12.8 GeV/amu

Deuterium 12.8 GeV/amu

Helium 12.8 GeV/amu

Helium 12.8 GeV/amu

Helium 30.0 GeV/amu

Carbon 12.8 GeV/amu

14

0

2

4

6

10

12

Layer Number

14

Sodium 12.8 GeV/amu

Single crystal performance

Channel Noise

File: data-out/20130204-211823.dat-analyse.root

MIP signal

D

CASIS 1 - Channel 1

Gain dispersion

Crystal responses equalized by normalizing to 1MIP energy deposit (@peak)

Single-crystal linearity (1)

D

Courtesy of G. Bigongiari (UniSi)

Switching from high to low gain

First layer, central cube: He-F-Na

Single-crystal linearity (2)

Ratio between low and high gain different from nominal one (1/20)?

Courtesy of G. Bigongiari (UniSi)

Direct energy deposit on photodiode

Direct energy deposit on photodiode

Shower study

Calorimeter linearity

D

Total energy deposit vs shower start

Shower start \rightarrow First layer with a hit > 15 MIP (D and He) or 30 MIP (Li)

Total energy deposit vs shower start

Shower start \rightarrow First layer with a hit > 15 MIP (D and He) or 30 MIP (Li)

Average shower profile

D

Average shower profile

D

Total energy distribution

Showers starting on 2° layer

Total energy distribution

Showers starting on 2° layer

Energy resolution

D

Energy resolution

Elena Vannuccini - CaloCube startup meeting 22/01/2014

Energy resolution

D

Energy resolution

D

Data vs Simulation

Possible causes of observed discrepancies:

- Saturation / low-to-high gain ratio
- Uncertainties associated with crystal calibration (ADC-to-MIP conversion, gain equalization)
- ▶ Fluctuation on photon collection efficiency → see Starodubtsev presentation
- ▶ Fluctiations on shower development, not well described by Fluka hadronic model ? → see Papini/Bottai presentation

Saturation

Saturation

Signal vs Z^2

Signal vs Z^2

