Attivita' del gruppo di Pavia

Calo Cube Meeting Firenze 22 January 2014

21/01/2014

- Digitizzatore
- SiPM
- Irraggiamento
- Test beam
- Simulazione

Digitizzatori DRS4

Il gruppo di Pavia collabora dall'inizio con l'esperimento MEG al PSI (Zurigo) dove i digitizzatori DRS sono stati sviluppati da Stefan Ritt

2 schede di test con 4 canali di DRS4 sono a Pavia Campionamento fino 5 Gs/s (scheda VME dalla CAEN in vendita)

Software installato e funzionante sia per l'acquisizione via USB che come oscilloscopio digitale

Esempio di uso della scheda DRS come oscilloscopio digitale

Applicazioni DRS4

L'applicazione del DRS4 per CaloCube consiste nel campionamento ad alta frequenza del segnale del fotorivelatore per discriminare il segnale Cerenkov da quello di scintillazione

Tecnica gia' studiata da DREAM

Applicazioni DRS4

L'applicazione del DRS4 per CaloCube consiste nel campionamento ad alta frequenza del segnale del fotorivelatore per discriminare il segnale Cerenkov da quello di scintillazione

Tecnica gia' studiata da DREAM

SiPM

Nel contesto di MEG a Pavia siamo coinvolti (con PSI e INFN Genova) nello studio di SiPM per elevate prestazioni di misura temporale: Advansid (FBK), Hamamatsu, Sensl, Excelitas, Ketek sono stati studiati

Stretti contatti con Advansid che e' stata scelta come fornitore (6500 pezzi)

Gruppo del servizio elettronico (tecnologo + tecnici + assegnista) a disposizione

Risultati test SiPM

Simulazione

In AGILE ci siamo dedicati alla simulazione del tracciatore sia per l'esperimento sia (in grande dettaglio) per il test beam. Sia del rivelatore che del sistema di test

Test beam

Nel corso del commissioning del tracciatore per il satellite AGILE abbiamo contribuito in modi sostanziale alla progettazione del test beam e all'analisi dei dati.

In particolare abbiamo acquisito particolare esperienza alla BTF con il fascio di test di fotoni.

LENA from the beginning ...

The reactor reached its first criticality on November,15th 1965 and was officially inaugurated on December 16th 1966.

<u>After the first 40 years of</u> operation, an official report of 2005 reported a list of <u>600</u> <u>publications</u> related to research conducted with the reactor in different areas:

- Nuclear Chemistry and Radiochemistry,
- ✓ Activation Analysis
- ✓ Basic Chemistry

Main Facilities

250 kW TRIGA Mk II Research Reactor

- X ray industrial generator
- 250 kV, 12 mA dose rate 15.6 Gy/min
- 350 kV, 6 mA dose rate 17.5 Gy/min

Gamma source of 60Co (0.26 kGy/h)

Radiochemistry Laboratory (Class 2)

Cyclotron IBA Cyclone 18/9
18 MeV protons (Imax = 80 μA)
9 MeV deuterons (Imax = 40 μA)

TRIGA Mark II Nuclear Research Reactor

- TRIGA (Training, Research, Isotopes production,
- General Atomics)
- 250-kW light-water Thermal Reactor, with an annular graphite reflector, cooled by natural convection
 offers many positions of irradiation (facilities) with "in-core" neutrons flux from 10¹² to 10¹³ n cm⁻² s⁻¹
- *6 "out-core" irradiation facilities with typical neutron flux from 106 to 10¹⁰ n cm⁻² s⁻¹
- Fuel: 20% enriched Uranium
- Moderator/Cooling: light water
- Reflector: graphite
- *****3 control rods
- Irradiation: 400 hours/year

TRIGA Mark II Nuclear Research Reactor

- Cylindrical configuration
- Lattice of 90 cylindrical elements (September 2013):
 - 80 moderator-fuel elements
 - 3 control rods (REGULATING, TRANSIENT and SHIM)
 - 1 Radium-Beryllium source
 - **2 vertical irradiation facilities** (Central Thimble, Pneumatic Transfer System Thimble (*Rabbit*))

REACTOR CORE

The core is placed at the bottom of the 6.25-m-high open tank with 2-m diameter.

"In-core" irradiation facilities - Central Thimble

Central Thimble

- It is positioned along the <u>vertical axis</u> of the "core" cylinder, where the <u>neutron</u> <u>flux is maximum</u>
- It can host up to 3 samples in cylindrical containers (130 mm-height; 30 mmdiameter made by Polyethylene Or Graphite reflector Aluminum)

"In-core" irradiation facilities

D. Alloni, M. Prata, A. Salvini, A. Ottolenghi

"Neutron flux characterization of the Pavia TRIGA Mark II Reactor for radiobiological and microdimetric applications" submitted to Radiation Protection Dosimetry (2013)

Central Thimble Measured Flux (n cm-2 s-1) (3.00 ± 0.15) 1012 Thermal (E < 0.21 eV) Epithermal (4.64 ± 0.21) 1012 (0.21 eV < E < 9.2)keV) Fast (E > 9.2 keV) (5.89 ± 0.18) 1012

Total Flux

 (1.39 ± 0.31) 1013

"In-core" irradiation facilities – Rabbit Thimble

Pneumatic Transfer System Thimble

- It is positioned along the <u>vertical axis</u> of the "core" cylinder, in the external ring (F-ring)
- A <u>pneumatic transfer system</u> offers the possibility to make short irradiation time in order to detect immediately the short half-life activated radionuclides, by means of HPGe gamma spectrometry installed in ^{Graphite reflector} Radiochemistry Laboratory

"In-core" irradiation facilities - Lazy Susan

Rotary specimen rack

- An annular groove in the upper part of the reflector body is provided to contain a special irradiation facility (**rotary specimen rack**).
- The rotary specimen rack is made of aluminum and consists of **40 holes** with inner diameter of 38 mm.
- It can host up to **80 samples** cylindrical containers (130mm-height; 30mm-diameter)

"In-core" irradiation facilities – Thermal Channel

Thermal channel

It has been recently installed, out from the reflector body, an aluminum cylinder (38cmheight; 7cm-diameter)

• (Thermal channel).

"In-core" irradiation facilities – Neutron Fluxes

- In order to characterize the irradiation facilities, experimental data on neutron fluxes have been collected analyzing and measuring the induced gamma activity in thin target foils of different materials irradiated in different TRIGA experimental channels.
- The data on the induced gamma activities have

been elaborated and finally compared with the Manera M Nastasi S Irradiation Measured Flux (n MCNP Flux (n

"Out-core"

"Out-core" irradiation facilities - Channel D

Neutron Fluxes n/cm²s

		Zona 1	Zona 2
	Thermal	6.34 • 10 ¹¹	$7.03 \cdot 10^{10}$
<section-header></section-header>	Epithermal	4.43•10 ¹¹	3.39•10 ¹⁰
	Fast	7.14 • 10 ¹⁰	7.66•10 ⁹
	Total	1.14·10 ¹²	1.12·10 ¹¹
		Zona 3	Zona 4
	Thermal	3.16•10 ⁹	2.99•10 ⁸
	Epithermal	4.53•10 ⁹	$5.65 \cdot 10^8$
	Fast	$1.38 \cdot 10^9$	2.36•10 ⁸
	Total	9.07·10 ⁹	1.10·10 ⁹

"Out-core" irradiation facilities - Thermal Column Thermal Column

Radial Piercing Channel (Ch. D)

Thermal Column modified for BNCT research & activities

Fig. 2. View upstream into the graphite thermal column, showing positioning of the neutron activation dosimeter foil packages.

"Out-core" irradiation facilities - Thermal

Energy Group Measured Flux $(n \text{ cm}^{-2} \text{ s}^{-1})$ (eV) $1.58 \ 10^3 < E <$ $4.39\ 10^7\ \pm$ $1.73 \ 10^7$ 9.0% (1**σ**) $1.07 \ 10^1 < E <$ $1.20\ 10^8\ \pm$ $1.58\ 10^3$ 5.4% (1**σ**) $4.14 \ 10^{-1} < E <$ $7.51\ 10^7\ \pm$ 1.07 101 3.1% (1**σ**) $1.00 \ 10^{-5} < E <$ $1.17\ 10^{10}\ \pm$ $4.14\ 10^{-1}$ 2.5% (1**σ**)

Thermal Column - The γ spectrum in air

Calculated by MCNP Measured by TLD

Bismuth shields to cut gamma coming from the core

LENA Research Center

- The research facilities are at the disposal of:
 - Public Research Institutions (National and International)
 - Private Companies
 - Schools and Universities students
 - Individual workers
- The reactor is used for many different purposes:
 - Fundamental Research
 - Applied Research and Technologic Transfer
 - Education and Training
 - Public Information

