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Why studying the two-loop massive sunrise?

I Phenomenologically: needed for any two-loop calculation in realistic
theories with massive particles

1. Electro-weak sector of SM

2. Massive QCD ( see gg → tt̄ at two loops! )

I Mathematically: it is the first (≈ easiest) diagram that escapes our
understanding through multiple-polylogs.

1. Functions: Elliptic functions, iterated integrals, concept of
transcendental weight...?

2. Differential Equation method: it is possible to find a canonical
basis?
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The two-loop massive sunrise graph

I(n1, n2, n3, n4, n5) = - ��
��

p

=

∫
Ddk Dd l

(k · p)n4 (l · p)n5

(k2 + m2
1)n1 (l2 + m2

2)n2 ((k − l − p)2 + m2
3)n3

=

∫
Ddk Dd l

(k · p)n4 (l · p)n5

Dn1
1 Dn2

2 Dn3
3

How do we compute all these integrals (in dimensional regularisation!!) ?
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Standard way to proceed:

I Use Integration-by-parts id.s (IBPs) to reduce them to Master
Integrals

∫
Ddk Dd l

(
vµ
j

∂

∂ kµ
i

(k · p)n4 (l · p)n5

Dn1
1 Dn2

2 Dn3
3

)
= 0

I Use IBPs to derive differential equations (DE)
in the external invariants for the MIs.

p2 = pµ p
µ → ∂

∂p2
=

1

2p2

(
pµ

∂

∂pµ

)
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One finds for the Sunrise:

I Sunrise graph reduced to 4 MIs

M1(d ; p2) , M2(d ; p2) , M3(d ; p2) , M4(d ; p2) ,

I Deriving DE we find 4 coupled differential equations:

∂

∂p2

 M1

...
M4

 =

 c11 ... c14

... ... ...
c41 ... c44

  M1

...
M4

+ sub-topologies

Every cij is function of p2 and d : → cij(d ; p2)
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I How to solve a system of differential equations?

Different choices of the basis of MIs can simplify DE.

I Try to triangularise the system as d → 4

I We can try and solve it oder by order in (d − 4)

1. Is this always possible?
2. Are there criteria to find a right basis?
→ only trial and error and some intuition
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I This concept has been generalised by J.Henn’s Canonical Basis.

I Find a basis mj(d ; p2) such that the system takes canonical form

∂

∂p2

 m1

...
mn

 = (d − 4)

 c11 ... c1n

... ... ...
cn1 ... cnn

  m1

...
mn


Where now cij is function ONLY of p2!!

→ also now some criteria start to be known!
[arXiv:1304.1806; arXiv:1401.2979; arXiv:1404.2922; arXiv:1404.4853]

I Complete decoupling as d → 4!!

I Results in this basis have particularly nice properties (uniform
transcendental weight, no rational prefactors, etc etc...)
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How does this work for the Sunrise?

Choice 1

S =

∫
DdkDd l

D1 D2 D3
, S1 =

∫
DdkDd l

D2
1 D2 D3

, S2 =

∫
DdkDd l

D1 D2
2 D3

, S3 =

∫
DdkDd l

D1 D2 D2
3

→ 4 coupled DE in d = 4 and in d = 2 (and in any even number of dimensions...).

Choice 2

S̃ =

∫
DdkDd l

1

D1 D2 D3
, S̃1 =

∫
DdkDd l

1

D2
1 D2 D3

,

S̃2 =

∫
DdkDd l

k · p
D1 D2 D3

, S̃3 =

∫
DdkDd l

l · p
D1 D2 D3

→ 4 coupled DE in d = 4

BUT: Two of them decouple in d = 2.
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Can we generalise this? −→ Schouten (Pseudo-)Identities!

I Valid only in integer number of dimensions → pseudo-identities!

I in d = n ∈ N dimensions only n vectors can be linearly
independent.

1. d = 1 dimension:
aµ, bµ cannot be independent → aµbνεµν = 0 .

2. d = 2 dimensions:
aµ, bµ, cµ cannot be independent → aµbνcρεµνρ = 0 .

3. d = 3 dimensions:
aµ, bµ, cµ, dµ cannot be independent → aµbνcρdσεµνρσ = 0 .

4. And so on in d = 4, d = 5, ...
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How can we use this information to find a

“good basis” of MIs as d ≈ n ∈ N?

⇓

They give new independent identities among the MIs in fixed
numbers of dimensions!!
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Squaring relations above we obtain Schouten polynomials:

I For Example take in 3 dimensions

aµbνcρεµνρ

Squaring it we get

→ P3(a, b, c) = a2b2c2− a2(b · c)2− b2(a · c)2− c2(a · b)2 + 2(a · b)(b · c)(a · c)

(Gram determinants of the n vectors!)

The polynomial can now be considered as d dimensional!

(d never appears on r.h.s!)

I P3(d ; a, b, c) = a2b2c2 − a2(b · c)2 − b2(a · c)2 − c2(a · b)2 + 2(a · b)(b · c)(a · c)

I P3(1; a, b, c) = P3(2; a, b, c) = 0 ,
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Sunrise depends on 3 vectors k , l , p → Schouten in 2 dimensions!!

→ “natural” number of dimensions for the Sunrise is 2!

The Sunrise satisfies a second-order differential equation in d = 2 !!

[arXiv:1112.4360] by S.Müller-Stach, S.Weinzierl, R.Zayadeh

[arXiv:1302.7004] by L.Adams, C.Bogner, S.Weinzierl

(everything can be then shifted to d = 4 with Tarasov’s formulas...)
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We can write one Schouten-Polynomial which is zero in d = 2 (and d = 1).

P3(d ; k, l , p) = k2l2p2 − k2(l · p)2 − l2(k · p)2 − p2(k · l)2 + 2(k · l)(l · p)(k · p)

Note that as k, l →∞ then P3(d ; k, l , p) ≈ k2l2

Consider now:

Z(d ; n1, n2, n3) =

∫
DdkDd l

P3(d ; k, l , p)

Dn1
1 Dn2

2 Dn3
3

Power-counting in d = 2

Z(d → 2; 1, 1, 1) UV div , Z(d → 2; 2, 1, 1) UV div , (with permutations)

Z(d → 2; 2, 2, 1) , Z(d → 2; 2, 1, 2) , Z(d → 2; 1, 2, 2) , UV finite!

and all higher powers of denominators!
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For all Z s that are finite we then also have at once:

Z(d → 2; n1, n2, n3)→ 0 .

I We can the reduce them to the 4 MIs

Z(d ; n1, n2, n3) =
3∑

i=0

Ci (d ; p2)Si (d ; p2) + sub-topologies

I This gives in principle a relation among the MIs in d = 2!

0 =
3∑

i=0

Ci (d → 2; p2) Si (d → 2; p2) + sub-topologies
∣∣∣
d→2

I Question: There are infinite converging Z s!
Which ones give non-trivial information (if any...)?

Apparently only those with the minimal powers required for convergence!
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Some examples of Z s:

I If the powers are too high no information as d → 2

Z(d ; 2, 2, 2) = −
(d − 1)(d − 2)

4

×
[
(d − 3)S(d ; p2) + m2

1S1(d ; p2) + m2
2S2(d ; p2) + m2

3S3(d ; p2)
]

I On the contrary:

Z2(d ; p2) = Z(d ; 2, 1, 2, p2)

=
(d − 1)

12

[
−(d − 2)p2 + (d − 3)(m2

1 − 2m2
2 + m2

3)
]
S(d ; p2)

+
(d − 1)

12
(p2 + m2

1 − 3m2
2 + 3m2

3) m2
1S1(d , p2)

−
(d − 1)

6
(p2 + m2

2) m2
2S2(d ; p2)

+
(d − 1)

12
(p2 + 3m2

1 − 3m2
2 + m2

3) m2
3S3(d ; p2)

+
(d − 1)(d − 2)

24
[T (d ;m1,m2)− 2T (d ;m1,m3) + T (d ;m2,m3)]
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Which in d = 2 becomes:

Z2(2; p2) = 0 = − 1

12
(m2

1 − 2m2
2 + m2

3)S(2; p2)

+
1

12
(p2 + m2

1 − 3m2
2 + 3m2

3) m2
1S1(2, p2)

− 1

6
(p2 + m2

2) m2
2S2(2; p2)

+
1

12
(p2 + 3m2

1 − 3m2
2 + m2

3) m2
3S3(2; p2)

+
1

96
ln

m2
2

m1m3
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In the very same way we can obtain similar relations for:

Z1(d ; p2) = Z(d ; 1, 2, 2) , Z3(d ; p2) = Z(d ; 2, 2, 1) ,

I One two of them are really independent in d = 2:

Z1(d ; p2) + Z2(d ; p2) + Z3(d ; p2) = −
(d − 1)(d − 2)

4
p2 S(d ; p2) ,

I We can choose 2 of them as new MIs! For example choose as basis:

S(d ; p2) , S1(d ; p2) , Z2(d ; p2) , Z3(d ; p2) .
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Differential equations in the new basis are in block form in d = 2

d

d p2

(
S
S1

)
=

(
c11 c12 c13 c14

c21 c22 c23 c24

) 
S
S1

Z2

Z3

+ sub-topologies

d

d p2

(
Z2

Z3

)
= (d − 2)

(
c31 c32 c33 c34

c41 c42 c43 c44

) 
S
S1

Z2

Z3

+ sub-topologies

The second system decouples completely in d = 2!

→ order by order in (d − 2) we can derive a second order differential
equation satisfied by S(d ; p2). [see Weinzierl et al., 2011/2013]
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I What about the alternative basis S̃j (found by chance...)??

I Let us express Z1, Z2, Z3 in terms of the S̃j !

Z1 =−
(d − 1)(d − 2)

4
S̃2

Z2 = +
(d − 1)(d − 2)

4
S̃3

Z3 =−
(d − 1)(d − 2)

4

[
p2 S̃0 − S̃2 + S̃3

]
.

I Schouten Id.s have automatically selected the “right” basis in d ≈ 2 !!!
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Conclusions and outlook

I Schouten identities are a new class of (pseudo-)identities among MIs!

I Schouten identities can be used to select a “good” basis of MIs as
d ≈ n ∈ N

I They show that in d = 2 the Sunrise has only 2 MIs
(the other two are linearly dependent!)

→ Decoupling of the system in d = n seems to be due to
”hidden relations” between the MIs in d = n ???!!!

1. Can this be used in more involved cases?

2. What happens with IR divergences?
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Thanks!
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Back-up slide
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What about d = 4 ?

I Schouten Polynomial has also the role of shifting the dimensions
d → d + 2 [R. Lee]

I Implies that:

Z1(d ; p2) =

∫
DdkDd l

P3(d ; k, l , p)

D1
1 D2

2 D2
3

≈
∫

Dd+2k Dd+2l

D1
1 D2

2 D2
3

and the same way for the others...

I Which implies that∫
Ddk Dd l

D1
1 D

2
2 D

2
3

and its permutations...

are the right MIs in d = 4!
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