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Why studying the two-loop massive sunrise?

» Phenomenologically: needed for any two-loop calculation in realistic
theories with massive particles

1. Electro-weak sector of SM

2. Massive QCD ( see gg — tt at two loops! )

» Mathematically: it is the first (= easiest) diagram that escapes our
understanding through multiple-polylogs.

1. Functions: Elliptic functions, iterated integrals, concept of
transcendental weight...?

2. Differential Equation method: it is possible to find a canonical
basis?



The two-loop massive sunrise graph
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How do we compute all these integrals (in dimensional regularisation!!) ?



Standard way to proceed:

» Use Integration-by-parts id.s (IBPs) to reduce them to Master
Integrals

o (k-p)™(l-p)m
dk d/ H _
/ PRI\ ok T DpDrDY 0
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Standard way to proceed:

» Use Integration-by-parts id.s (IBPs) to reduce them to Master
Integrals

o (k-p)™(l-p)m
dk d/ H _
/ PRI\ ok T DpDrDY 0

1

> Use IBPs to derive differential equations (DE)
in the external invariants for the Mls.
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One finds for the Sunrise:

» Sunrise graph reduced to 4 Mls

Mi(d;p?), Ma(d:p?), Ms(d;p?), Ma(d;p®),

> Deriving DE we find 4 coupled differential equations:

9 M1 11 ... Cia Ml
2 = + sub-topologies
P M4 C41 ... Cas M4

Every c; is function of p? and d: — c¢;(d; p?)
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» How to solve a system of differential equations?

Different choices of the basis of Mls can simplify DE.
» Try to triangularise the system as d — 4
» We can try and solve it oder by order in (d — 4)

1. Is this always possible?
2. Are there criteria to find a right basis?
— only trial and error and some intuition
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» This concept has been generalised by J.Henn’s Canonical Basis.

» Find a basis m;(d; p?) such that the system takes canonical form

8 mq C11 Cin mp

my, Cnl .- Cnn my,

Where now c; is function ONLY of p?!!

— also now some criteria start to be known!
[arXiv:1304.1806; arXiv:1401.2979; arXiv:1404.2922; arXiv:1404.4853]
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» This concept has been generalised by J.Henn’s Canonical Basis.

» Find a basis m;(d; p?) such that the system takes canonical form

8 mq C11 Cin mp

my, Cnl .- Cnn my,

Where now c; is function ONLY of p?!!

— also now some criteria start to be known!
[arXiv:1304.1806; arXiv:1401.2979; arXiv:1404.2922; arXiv:1404.4853]

» Complete decoupling as d — 4!!

» Results in this basis have particularly nice properties (uniform
transcendental weight, no rational prefactors, etc etc...)

n
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How does this work for the Sunrise?

Choice 1
D9kD9| [ D9k [ 29k [ D9kD9)
DiD,Dy’ Tt ) D2pDy’ 2T ) DiD2Dy’ T ) DD, D2

— 4 coupled DE in d =4 and in d =2 (and in any even number of dimensions...).

Choice 2

- 1 ~ 1
S= [ 9% ————, 5§ :/Qdedli,
/ Dy D> D3 ! D? Dy D3

k- /-
/’deQ" P 5= /@de" P
D1 D, D3’ Dy D> Ds
— 4 coupled DE ind =4

BUT: Two of them decouple in d = 2.



Can we generalise this?
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Can we generalise this? — Schouten (Pseudo-)ldentities!

» Valid only in integer number of dimensions — pseudo-identities!

» in d = n € N dimensions only n vectors can be linearly
independent.

1. d =1 dimension:
a", b" cannot be independent — a"b"¢ ., = 0.

2. d = 2 dimensions:
a", b", c" cannot be independent — a"b"c’¢,, = 0.

3. d = 3 dimensions:
a", b*, ¢, d" cannot be independent — a"b"c”’d% € npe = 0.

4. Andsoonind =4,d =35, ...



How can we use this information to find a

“good basis” of Mls as d ~ n € N?



How can we use this information to find a

“good basis” of Mls as d ~ n € N?

They give new independent identities among the Mls in fixed
numbers of dimensions!!
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Squaring relations above we obtain Schouten polynomials:

» For Example take in 3 dimensions
akb”cPenp
Squaring it we get
— P3(a,b,c) = a?b?c® — a?(b-c)? — b?(a-c)?> — c?(a- b)? +2(a- b)(b-c)(a- )

(Gram determinants of the n vectors!)



Squaring relations above we obtain Schouten polynomials:

» For Example take in 3 dimensions

akb”cPenp

Squaring it we get
— P3(a,b,c) = a?b?c® — a?(b-c)? — b?(a-c)?> — c?(a- b)? +2(a- b)(b-c)(a- )
(Gram determinants of the n vectors!)

The polynomial can now be considered as d dimensional!
(d never appears on r.h.s!)

> P3(d;a,b,c) = a?b?c? — a?(b-c)? — b?(a-c)?> — c?(a- b)®> +2(a- b)(b-c)(a-c)

> P3(1;a,b,c)=P3(2;a,b,c)=0,



Sunrise depends on 3 vectors k,/, p — Schouten in 2 dimensions!!

— “natural” number of dimensions for the Sunrise is 2!
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[arXiv:1302.7004] by L.Adams, C.Bogner, S.Weinzierl



Sunrise depends on 3 vectors k,/, p — Schouten in 2 dimensions!!

— “natural” number of dimensions for the Sunrise is 2!

The Sunrise satisfies a second-order differential equation in d =2 !!

[arXiv:1112.4360] by S.Miiller-Stach, S.Weinzierl, R.Zayadeh
[arXiv:1302.7004] by L.Adams, C.Bogner, S.Weinzierl

(everything can be then shifted to d = 4 with Tarasov's formulas...)

o
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We can write one Schouten-Polynomial which is zero in d =2 (and d = 1).

Ps(d; k, 1, p) = k*Pp? — k2(1- p)® — P2(k - p)? — p>(k - )2 +2(k - )(I - p)(k - p)

Note that as k,/ — co then Ps(d;k, !, p) ~ k*/?

Consider now:

P3(d; k7 l7 p)
D" D;? D3®

Z(d; m, o, n3) = /@dkz)d/
Power-counting in d = 2
Z(d —2;1,1,1) UV div, Z(d — 2;2,1,1) UV div, (with permutations)

Z(d —2;2,2,1), Z(d—221,2), Z(d—21,22), UV finitel

and all higher powers of denominators!



For all Zs that are finite we then also have at once:
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For all Zs that are finite we then also have at once:

Z(dﬁ2;n1,n2,n3) — 0.

» We can the reduce them to the 4 Mls

3
Z(d; n1, np,n3) = Z Ci(d; p?) Si(d; p?) + sub-topologies
i=0

» This gives in principle a relation among the Mls in d = 2!

3
0= Z Ci(d — 2; p2) Si(d = 2; p2) + sub-topologies’dHz
i=0

> Question: There are infinite converging Zs!
Which ones give non-trivial information (if any...)?

Apparently only those with the minimal powers required for convergence!



Some examples of Zs:
» If the powers are too high no information as d — 2
(d —1)(d —2)

4
x [(d = 3)S(d; p*) + m S1(d; p*) + m3Sa(d; p°) + m3S3(d; p?)]
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Some examples of Zs:
» If the powers are too high no information as d — 2
(d —1)(d —2)

4
x [(d = 3)S(d; p?) + miSi(d; p*) + m3Sa(d; p°) + m3Ss(d; p?)]

7(d;2,2,2) = —

» On the contrary:

Zo(d; p?) = Z(d; 2,1,2,p%)

- (dl—2 Y [ (4 2)p + (d - 3)(m? — 2m3 + m2)] S(d: p?)

(@1
12
L5 4 md) (o)
(41
12

+ (p? + m2 —3m3 +3m3) m2S1(d, p?)

+ (P* +3mi — 3m3 + m3) m3Ss(d; p°)

+ W [T(d; my, mo) — 2 T(d; my, m3) + T(d; my, m3)]



Which in d = 2 becomes:

1
Z(2;p°)=0= —ﬁ(m% —2mj + m3)S(2; p°)

1
+ 15 (" + mi = 3m} +3m3) miSi(2.p)

1

_ 6(p2 + mg) m352(2; p2)
1

+ 15 (P* + 3mi = 3m} + m3) m3Ss(2; p”)
1 m3

— |
+ 96 n mims
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In the very same way we can obtain similar relations for:

Zi(d; p?) = Z(d; 1,2,2), Z3(d; p?) = Z(d; 2,2,1),



In the very same way we can obtain similar relations for:

Zi(d; p?) = Z(d; 1,2,2), Z3(d; p?) = Z(d; 2,2,1),

> One two of them are really independent in d = 2:

Z1(d; p°) + Z2(d; p°) + Z3(d; p*) = —

(d —1)(d —2)
4

p? S(d; p?) ,



In the very same way we can obtain similar relations for:

Zi(d; p?) = Z(d; 1,2,2), Z3(d; p?) = Z(d; 2,2,1),

> One two of them are really independent in d = 2:

21(d: %) + 22(:p2) + Z3(d; p7) = - LD

p? S(d; p?) ,

» We can choose 2 of them as new Mls! For example choose as basis:

S(d;p®), Su(dip®), Z(d:ip’), Zs(d:p’).



Differential equations in the new basis are in block form in d =2

S
d S\ ([ c1 cax caz ca 51 .
T;)Q( S )—( o Gy Cos oo 7 + sub-topologies
Z3
S
d 2z, 31 32 33 C3 S1 .
— =(d—-2 sub-topologies
d p? ( Z3 ) ( )( Ca1  Ca2 43 Cag 2> +su polog!
Z3

The second system decouples completely in d = 2!

— order by order in (d — 2) we can derive a second order differential
equation satisfied by S(d; p?). [see Weinzierl et al., 2011/2013]



> Wh i S
at about the alternative basis 5; (found by chance...)??
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» What about the alternative basis S; (found by chance...)??

> Let us express Z;, Z>, Z3 in terms of the §J I

SREL (EL TS
7=y (d=1d=2) &
4
Z3:,W [P2§0*§2+§3] .

» Schouten Id.s have automatically selected the “right” basis in d =~ 2 !ll
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Conclusions and outlook

> Schouten identities are a new class of (pseudo-)identities among Mls!

» Schouten identities can be used to select a “good” basis of Mls as
~neN

» They show that in d = 2 the Sunrise has only 2 Mls
(the other two are linearly dependent!)

— Decoupling of the system in d = n seems to be due to
"hidden relations” between the Mls in d = n 77711




Conclusions and outlook

> Schouten identities are a new class of (pseudo-)identities among Mls!

» Schouten identities can be used to select a “good” basis of Mls as
~neN

» They show that in d = 2 the Sunrise has only 2 Mls
(the other two are linearly dependent!)

— Decoupling of the system in d = n seems to be due to
"hidden relations” between the Mls in d = n 77711

1. Can this be used in more involved cases?

2. What happens with IR divergences?



Thanks!



Back-up slide
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What about d =47

Schouten Polynomial has also the role of shifting the dimensions
d — d+2[R. Lee]

Implies that:

Pa(d: k.| d+2y pd+2)
zl(d;p2):/gdk®dlu ~ /%

1p2 D2 2 D2
Dy D; Dy Di D} D3
and the same way for the others...

Which implies that

D7k DY
Di D3 D3
are the right Mls in d = 4!

and its permutations...



