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Mechanism able to dynamically produce the  
baryon asymmetry

Link between cosmology, neutrino & new physics

Physics beyond 
the Standard 

Model

Low energy data  
(ν-parameters…)

Leptogenesis

?

Why leptogenesis?

See-saw 
mechanism
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•3 RH neutrinos ➔ 18 free parameters

Light neutrino mass 
matrix:

Complex orthogonal 
matrix:

6 3 6 318

9 low-energy (LE) neutrino parameters:

[Casas, Ibarra 2001]

9 high-energy (HE) neutrino parameters:

testable at experiments
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•Too many parameters are still unconstrained

“Raw” see-saw models 
are NOT predictive

Some theoretical 
inputs

New phenomenology: 
leptogenesis

•Can leptogenesis provide an explanation and predictions 
on neutrino data?

•Can LE neutrino data support/disprove leptogenesis?

Input from known low-energy neutrino data AND baryon 
asymmetry can provide info on unknown LE parameters and also 
constrain HE parameters

Making leptogenesis predictive means making it “testable”
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Produce 
lepton 

asymmetry

Obtain 
baryon 

asymmetry

Sphalerons

Core ideas of leptogenesis

Decay of heavy RH Majorana neutrinos

Ni
�i�! li �

† Ni
�̄i�! l̄i �

•  Lepton number violating 
!

• CP-violating  
!

• Out of equilibrium
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•For T≲1012 GeV, τ-interactions are fast enough to break 
the coherence of 

T (GeV)

≈1012

≈109

Unflavoured

2 fully 
flavoured

3 fully 
flavoured

Coherent superposition 
of flavour eigenstates

τ-component is measured

μ-component is measured
Density matrix 

formalism

|lii, |l̄ii

Adding flavour [Abada et al. 2006;  
 Nardi, Nir, Roulet, Racker 2006; 

   Blanchet, Di Bari, Raffelt ‘06; Riotto, De Simone 2006] 
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4.2 Scenarios with M1 ⌧ 109GeV

Let us now discuss those mass patterns where at least one Mi ⌧ 109 GeV. There are 6

di↵erent possibilities, as sketched in Fig. 5. It is quite clear, from our previous discussions,

(a) (b) (c)

(d) (e) (f)

Figure 5: The six possible mass patterns with M
1

⌧ 109 Gev. Only (b) and (c) allow for

a successful strong thermal leptogenesis.

that for all them it is always possible to enforce a strong wash-out of the pre-existing

asymmetry imposing K
1e, K1µ, K1⌧ & 10 [15]. Indeed if at T ⇠ TB2

, when the N
2

-inverse

processes wash-out freeze, the residual value of the pre-existing asymmetry is given by

Np

B�L(T ⇠ TB2

), then at T ⇠ M
1

⌧ 109 GeV, irrespectively of the value of TB2

, this will

be distributed in leptons and anti-leptons quantum states that are an incoherent mixture

of the three light neutrino flavours. Therefore, the N
1

wash-out will act separately on

each flavour contribution Np

�e,µ,⌧
to the total residual pre-existing asymmetry Np

B�L(TB2

).

In this way, at the end of the N
1

washout, the final value of the residual fraction of the

pre-existing asymmetry is given by

Np,f
B�L =

X

↵=e,µ,⌧

Np

�↵
e�

3⇡
8 K↵ . (59)

Therefore, imposing K
1e, K1µ, K1⌧ & 10, one can this time always enforce a su�ciently

strong washout of a pre-existing large asymmetry (wf . 10�8). However, such a strong

condition would also wash-out the contribution N lep,f
B�L produced from the two heaviest RH

21
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Figure 3: The three possible mass patterns where at least one RH neutrino mass is

comprised between 109 GeV and 1012 GeV.

4.1.1 Case M
2,3 � 1012 GeV

Let us start with the case where the two heavier RH neutrino masses M
2,3 � 1012 GeV

while 1012 GeV � M
1

� 109 GeV. The evolution of the residual pre-existing asymmetry

Np

B�L proceeds through the same steps discussed in the heavy flavoured scenario until the

end of the N
2

washout at T ⇠ TB2

when it is given by the eq. (41).

At this stage an important di↵erence arises between the two scenarios. In the con-

sidered light flavoured scenario, before the onset of the N
1

washout processes, the tauon

charged lepton interactions become e↵ective. In this way the ⌧ component of the quantum

lepton states is measured and they become an incoherent mixture of three components: a

⌧ component, a component `p⌧̃2 (the projection of the `
2

component on the ⌧̃ plane), and

finally a component `p⌧̃2̃ (the projection of the `
2

orthogonal component on the ⌧̃ plane).

The residual value of the pre-existing asymmetry can be then decomposed correspondingly

as the sum of three terms,

Np

B�L(10
12 GeV � T � M

1

) = Np

�⌧
+Np

�⌧̃2
+Np

�⌧̃
2̃
, (49)

where

Np

�⌧
= [p

2⌧ N
p

�2
(TB3

) e�
3⇡
8 K2 + p

˜

2⌧ N
p
�2̃
(TB3

)] (50)

Np

�⌧̃2
= (1� p

2⌧ )N
p
�2
(TB3

) e�
3⇡
8 K2

Np

�⌧̃
2̃

= (1� p
˜

2⌧ )N
p

�2̃
(TB3

) . (51)

When finally the N
1

wash-out processes act on the pre-existing asymmetry, one has to

distinguish the wash-out acting on Np

�⌧
, ruled by K

1⌧ ⌘ p
1⌧ K1

, and the wash-out acting

18

Figure 1: The mass pattern corresponding to the heavy flavoured scenario.

as a coherent superposition of a `
3

parallel component and of a `
3

orthogonal component,

explicitly 5

|`pi = Cp3|`3i+ Cp˜3|`p
˜

3

i , with pp3 + pp˜3 = 1 , (25)

where pp3 ⌘ |Cp3|2 and pp˜3 ⌘ |Cp˜3|2. This decomposition is pictorially represented in

the upper-right panel of Fig. 2. The same decomposition can be made for the pre-

existing anti-leptons and under the given assumptions one has C̄p3 = Cp3 and C̄p˜3 = Cp˜3.
Correspondingly the pre-existing B � L asymmetry can be also decomposed as

Np,i
B�L = Np,i

�3
+Np,i

�3̃
, (26)

where we defined Np,i
�3

= pp3 N
p,i
B�L and Np,i

�3̃
= (1� pp3)N

p,i
B�L.

3.2 Second stage: M3 & T & TB3

Let us now discuss a second stage for M
3

& T & TB3

, where TB3

' M
3

/zB3

is the freeze-

out temperature of the N
3

inverse processes and zB3

' 2 + 4K0.13
3

e�2.5/K3 = O(1 � 10)

[25]. An interaction of a quantum lepton state |`pi with a Higgs boson can be regarded,

in a classical statistical picture, as a measurement process where there is a probability pp3
that |`pi is measured as a `

3

producing a N
3

in the inverse decay and a probability 1�pp3
that is measured as a `

˜

3

and in this case no inverse process occurs 6. In this way only the

5Notice that with the notation `3̃ we mean the projection of |`pi on the plane orthogonal to |`3i so

that h`3|`3̃i = 0. More precisely we should write `3̃p but we imply the subscript p in order to simplify

the notation. We will do the same for the projections on the planes orthogonal to |`2i and |`1i.
6This is analogous to what happens in active-sterile neutrino oscillations described in terms classi-

cal Boltzmann equations [31, 23], where the orthogonal component here plays the role of the sterile

component.

12

Unflavoured

2 fully flavoured 3 fully flavoured

Guess who?
•Several ways to choose the RH neutrino spectrum.

• Comply with the two “scales”: 109, 1012 GeV.
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4.1.1 Case M
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Let us start with the case where the two heavier RH neutrino masses M
2,3 � 1012 GeV

while 1012 GeV � M
1

� 109 GeV. The evolution of the residual pre-existing asymmetry

Np

B�L proceeds through the same steps discussed in the heavy flavoured scenario until the

end of the N
2

washout at T ⇠ TB2

when it is given by the eq. (41).

At this stage an important di↵erence arises between the two scenarios. In the con-

sidered light flavoured scenario, before the onset of the N
1

washout processes, the tauon

charged lepton interactions become e↵ective. In this way the ⌧ component of the quantum
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as a coherent superposition of a `
3

parallel component and of a `
3

orthogonal component,

explicitly 5

|`pi = Cp3|`3i+ Cp˜3|`p
˜

3

i , with pp3 + pp˜3 = 1 , (25)

where pp3 ⌘ |Cp3|2 and pp˜3 ⌘ |Cp˜3|2. This decomposition is pictorially represented in

the upper-right panel of Fig. 2. The same decomposition can be made for the pre-
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Correspondingly the pre-existing B � L asymmetry can be also decomposed as
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where we defined Np,i
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= pp3 N
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B�L and Np,i
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= (1� pp3)N
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3.2 Second stage: M3 & T & TB3

Let us now discuss a second stage for M
3

& T & TB3

, where TB3

' M
3

/zB3

is the freeze-

out temperature of the N
3

inverse processes and zB3

' 2 + 4K0.13
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e�2.5/K3 = O(1 � 10)

[25]. An interaction of a quantum lepton state |`pi with a Higgs boson can be regarded,

in a classical statistical picture, as a measurement process where there is a probability pp3
that |`pi is measured as a `

3

producing a N
3

in the inverse decay and a probability 1�pp3
that is measured as a `

˜

3

and in this case no inverse process occurs 6. In this way only the

5Notice that with the notation `3̃ we mean the projection of |`pi on the plane orthogonal to |`3i so

that h`3|`3̃i = 0. More precisely we should write `3̃p but we imply the subscript p in order to simplify

the notation. We will do the same for the projections on the planes orthogonal to |`2i and |`1i.
6This is analogous to what happens in active-sterile neutrino oscillations described in terms classi-

cal Boltzmann equations [31, 23], where the orthogonal component here plays the role of the sterile

component.

12

Unflavoured

2 fully flavoured 3 fully flavoured

Flavoured N2-dominated scenario

Guess who?
•Several ways to choose the RH neutrino spectrum.

• Comply with the two “scales”: 109, 1012 GeV.
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(1) It is naturally realised in SO(10)-inspired models

These models predict a precise spectrum of RH neutrinos:

M3 � 1012 GeV

109 GeV . M2 . 1012 GeV

M1 . 109 GeV

(2) This scenario can become predictive

The requirement of independence of any pre-existing 
asymmetry highly constrains the LE parameters

Why should flavoured N2 be interesting?

High reheating temperature, in line with BICEP2 (to be confirmed…)

[Branco et al. 2002; Nezri, Orloff 2002; Akhmedov, Frigerio, Smirnov 2003]
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•Full independence of initial conditions
T (GeV)

Reheating

Something ?? (Affleck-Dine, GUT-, Gravitational- baryogenesis...)

Initial asymmetry 

pre-existing to 
leptogenesis

Leptogenesis

Np,f
B�LN lep,f

B�L

Final pre-existing 

asymmetry erased 
by leptogenesis

Strong thermal leptogenesis

Np,i
B�L

Conditions on 
decay parameters 

and spectrum
N lep,f

B�L � Np,f
B�L

≈1014

≈1011
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How?
4.2 Scenarios with M1 ⌧ 109GeV

Let us now discuss those mass patterns where at least one Mi ⌧ 109 GeV. There are 6

di↵erent possibilities, as sketched in Fig. 5. It is quite clear, from our previous discussions,

(a) (b) (c)

(d) (e) (f)

Figure 5: The six possible mass patterns with M
1

⌧ 109 Gev. Only (b) and (c) allow for

a successful strong thermal leptogenesis.

that for all them it is always possible to enforce a strong wash-out of the pre-existing

asymmetry imposing K
1e, K1µ, K1⌧ & 10 [15]. Indeed if at T ⇠ TB2

, when the N
2

-inverse

processes wash-out freeze, the residual value of the pre-existing asymmetry is given by

Np

B�L(T ⇠ TB2

), then at T ⇠ M
1

⌧ 109 GeV, irrespectively of the value of TB2

, this will

be distributed in leptons and anti-leptons quantum states that are an incoherent mixture

of the three light neutrino flavours. Therefore, the N
1

wash-out will act separately on

each flavour contribution Np

�e,µ,⌧
to the total residual pre-existing asymmetry Np

B�L(TB2

).

In this way, at the end of the N
1

washout, the final value of the residual fraction of the

pre-existing asymmetry is given by

Np,f
B�L =

X

↵=e,µ,⌧

Np

�↵
e�

3⇡
8 K↵ . (59)

Therefore, imposing K
1e, K1µ, K1⌧ & 10, one can this time always enforce a su�ciently

strong washout of a pre-existing large asymmetry (wf . 10�8). However, such a strong

condition would also wash-out the contribution N lep,f
B�L produced from the two heaviest RH

21

•Strong thermal leptogenesis can be realised 
 ONLY within a N2-dominated scenario with this pattern
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Figure 3: The three possible mass patterns where at least one RH neutrino mass is

comprised between 109 GeV and 1012 GeV.
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as a coherent superposition of a `
3

parallel component and of a `
3

orthogonal component,

explicitly 5

|`pi = Cp3|`3i+ Cp˜3|`p
˜

3

i , with pp3 + pp˜3 = 1 , (25)

where pp3 ⌘ |Cp3|2 and pp˜3 ⌘ |Cp˜3|2. This decomposition is pictorially represented in

the upper-right panel of Fig. 2. The same decomposition can be made for the pre-

existing anti-leptons and under the given assumptions one has C̄p3 = Cp3 and C̄p˜3 = Cp˜3.
Correspondingly the pre-existing B � L asymmetry can be also decomposed as

Np,i
B�L = Np,i

�3
+Np,i

�3̃
, (26)

where we defined Np,i
�3

= pp3 N
p,i
B�L and Np,i

�3̃
= (1� pp3)N

p,i
B�L.

3.2 Second stage: M3 & T & TB3

Let us now discuss a second stage for M
3

& T & TB3

, where TB3

' M
3

/zB3

is the freeze-

out temperature of the N
3

inverse processes and zB3

' 2 + 4K0.13
3

e�2.5/K3 = O(1 � 10)

[25]. An interaction of a quantum lepton state |`pi with a Higgs boson can be regarded,

in a classical statistical picture, as a measurement process where there is a probability pp3
that |`pi is measured as a `

3

producing a N
3

in the inverse decay and a probability 1�pp3
that is measured as a `

˜

3

and in this case no inverse process occurs 6. In this way only the

5Notice that with the notation `3̃ we mean the projection of |`pi on the plane orthogonal to |`3i so

that h`3|`3̃i = 0. More precisely we should write `3̃p but we imply the subscript p in order to simplify

the notation. We will do the same for the projections on the planes orthogonal to |`2i and |`1i.
6This is analogous to what happens in active-sterile neutrino oscillations described in terms classi-

cal Boltzmann equations [31, 23], where the orthogonal component here plays the role of the sterile

component.

12

Unflavoured

2 fully flavoured 3 fully flavoured

[Barbieri, Creminelli, Strumia 2000;  
Engelhard, Grossman, Nardi, Nir 2007; 

Bertuzzo, Di Bari, Marzola 2010]This is precisely the same pattern  
predicted by SO(10)-inspired models
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•Normal ordering 
•Dependence on Np,i 
•Dependence on the 
experimental angles  

•Dependence on Dirac phase δ

Lower bound on m1

m
1

� m⇤����Ue1 � Ue3
U⌧1

U⌧3

����

8
<

:

s
Kmin

1e

M
⌦

�
����Ue2 � Ue3

U⌧2

U⌧3

����

r
m

sol

m⇤

9
=

;

2

|⌦ij |2  M⌦ = 2

Np,i=0.1
Np,i=0.01
Np,i=0.001

m⇤ ' 10�3 eV,

m1 & 1meV 95% C.L.



Statistics
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For Np,i=0.1, |Ωij|2≤2 :

• 99% of points with

Experiments can then 
exclude portions of 

parameter space accordingly.

m1 & 11meV

• 95% of points with

m1 & 18meV

• 100% of points larger than the 
analytical lower bound.

m1 & 1meV

�
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•CMB spectrum alone:X
m⌫ < 0.933 eV

Long Baseline experiments must determine the ordering!

[Planck XVI]

[Beutler et al. 2014]

• BOSS collaborationX
m⌫ = (0.36± 0.10) eV

m1 = (0.127± 0.032) eV

m1 = (0.117± 0.032) eV

at 3.4σ
NO

IO

Experiments? Cosmology!

are experiments 
pointing at m1≠0?

X
m⌫ = (0.22± 0.09) eV

[Planck XX]

•CMB+SZ+BAO



•Numerical predictions 
•Analytical proof on the way

New FrontiersCortona, 29th May 2014

SO(10)-inspired + Strong thermal leptogenesis

Predictions

m ≈ 20 meV

m  

Ordering NORMAL

θ ≳ 2°

δ ≈ -45°

θ ≲ 41°

[Di Bari, Marzola]

An example: SO(10)-inspired

Daya Bay 2012

Fogli et al., 12/201305/2013

2011

Waiting for NOνA…
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Conclusions
•Leptogenesis can link cosmology and neutrino physics.  
•Predictions on LE and HE neutrino parameters?

Strong thermal leptogenesis:

•Naturally realised in SO(10)-inspired models 
• Promising embedding of leptogenesis and GUT theory 

!
•It is predictive on its own 

• m1 ≳ 1 meV, but 
• low m1 highly disfavoured  

(though quantitatively it may depend on the chosen parameterisation) !
•It can be severely cornered by future experiments 

• We are entering an exciting era of new experimental 
results that leptogenesis will have to face.

Flavoured N2-dominated
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Flavour coupling
•Flavour asymmetries do not evolve independently 
•Coupling through Higgs and quark asymmetries

Modification of the final asymmetry

Modification of the statistical limits

1 order of magnitude for ≈30% of the param. space

99% limit ≈×2 higher

[Blanchet, Di Bari, 2006;  
Antusch, Di Bari, Jones, SFKing, 2012]

e ē

µ µ̄

⌧̄⌧

� �†

q q̄

[Work in progress…]

2-flavoured regime: N2’s decay,

3-flavoured regime: N1’s washout,

�, � = (e+ µ), ⌧

↵,� = e, µ, ⌧
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Phantom terms
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[Nardi, Racker, Roulet ’06; 
Antusch, Di Bari, SFKing, Jones ’10; 
Blachet, Di Bari, Marzola, Jones ’11,’12]

•                                        in ≈30% of the parameter space 
•Assumed zero in strong thermal analysis

[SEKing, MRF 2014]
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Light neutrino spectrum
Tritium β decay:

ΛCDM:
Quasi  

degenerate

Hierarchical

Semi-hierarchical 
spectrum

me < 2 eV

m1 < 0.07 eV

[Mainz-Troitzk]

[Planck+WP+BAO+highL]
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