AdS₆ solutions of type II supergravity

Marco Fazzi

1406.xxxx F. Apruzzi, MF, A. Passias, D. Rosa, A. Tomasiello (1309.2949 F. Apruzzi, MF, D. Rosa, A. Tomasiello)

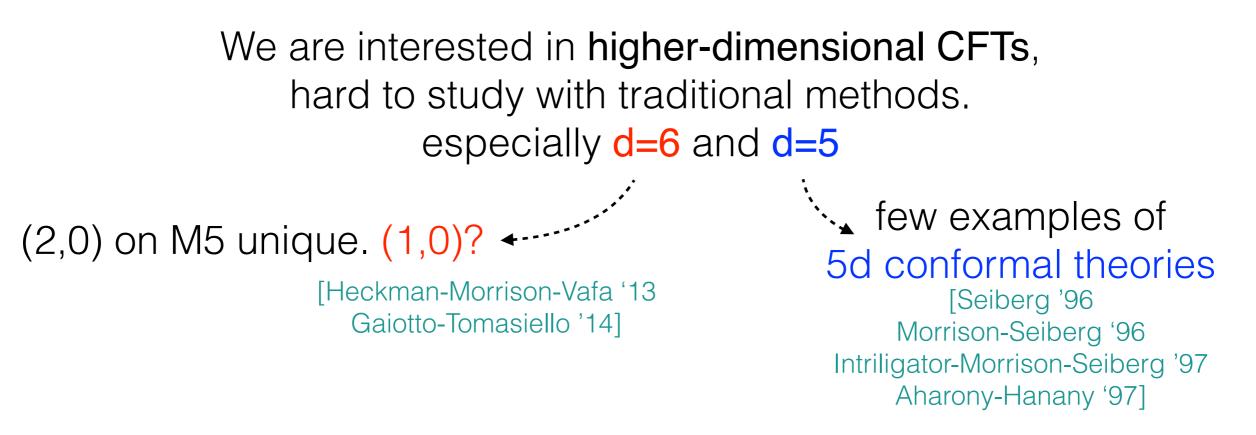
New frontiers of Theoretical Physics

Cortona, May 30th 2014

Motivation

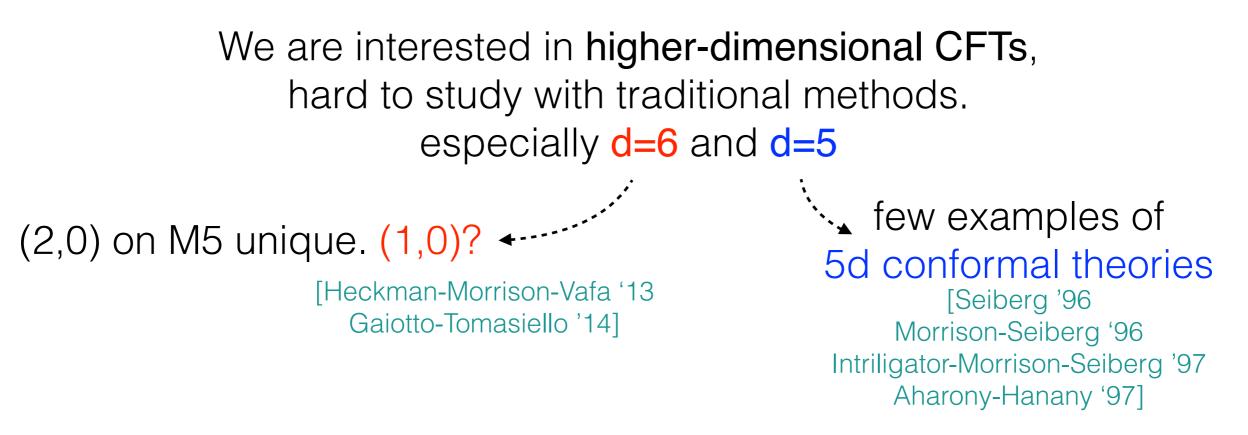
We are interested in higher-dimensional CFTs, hard to study with traditional methods. especially d=6 and d=5 (2,0) on M5 unique. (1,0)? ••••••• [Heckman-Morrison-Vafa '13 Gaiotto-Tomasiello '14] few examples of 5d conformal theories [Seiberg '96 Morrison-Seiberg '97 Aharony-Hanany '97]

Motivation



We are going to attack the problem holographically:

Motivation



We are going to attack the problem **holographically:**

We will pave the way for a full classification of **N = 1 supersymmetric AdS₆ vacua in type IIB**: classification problem reduced to two PDEs

Full classification of AdS₇ x M_3 [Apruzzi-MF-Rosa-Tomasiello '13]

Full classification of AdS₇ x M_3 [Apruzzi-MF-Rosa-Tomasiello '13]

• NO AdS7 solutions in IIB

Full classification of AdS₇ x M_3 [Apruzzi-MF-Rosa-Tomasiello '13]

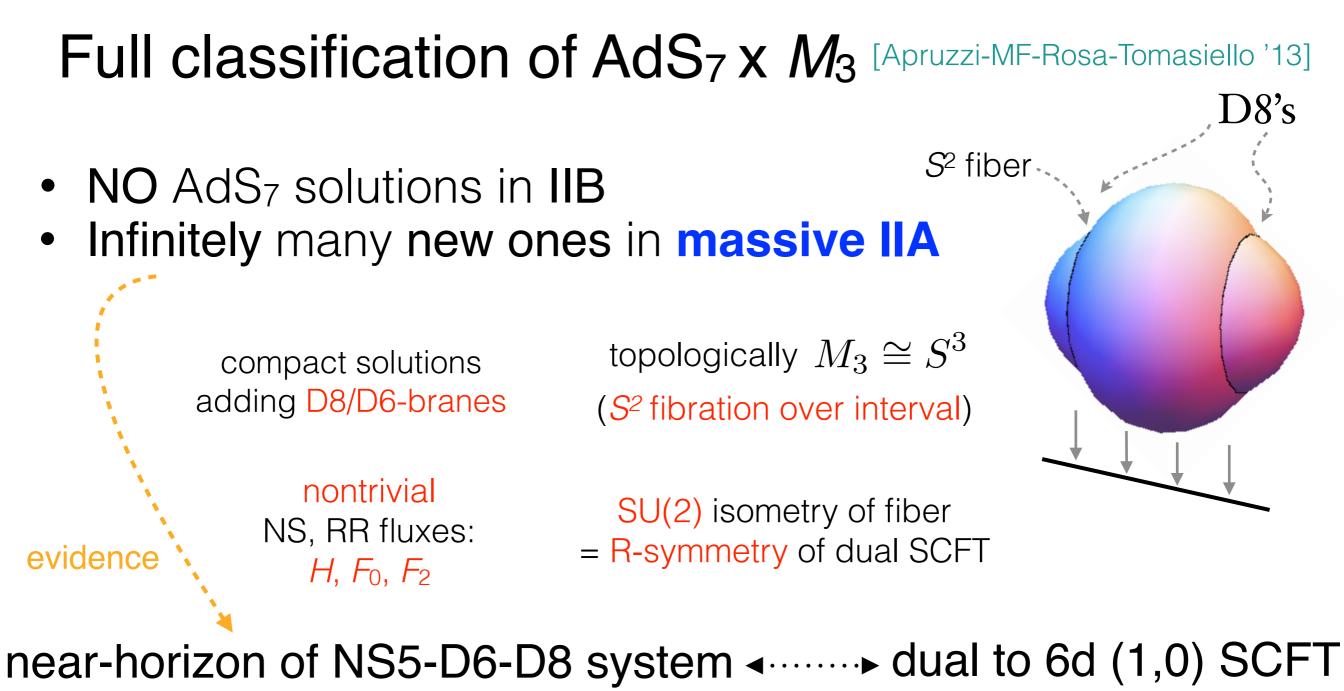
- NO AdS7 solutions in IIB
- Infinitely many new ones in massive IIA

Full classification of AdS₇ x M_3 [Apruzzi-MF-Rosa-Tomasiello '13] • NO AdS₇ solutions in IIB • Infinitely many new ones in massive IIA topologically $M_3 \cong S^3$ (S² fibration over interval)

Full classification of AdS₇ x M_3 [Apruzzi-MF-Rosa-Tomasiello '13] • NO AdS₇ solutions in IIB • Infinitely many new ones in massive IIA topologically $M_3 \cong S^3$ (S² fibration over interval)

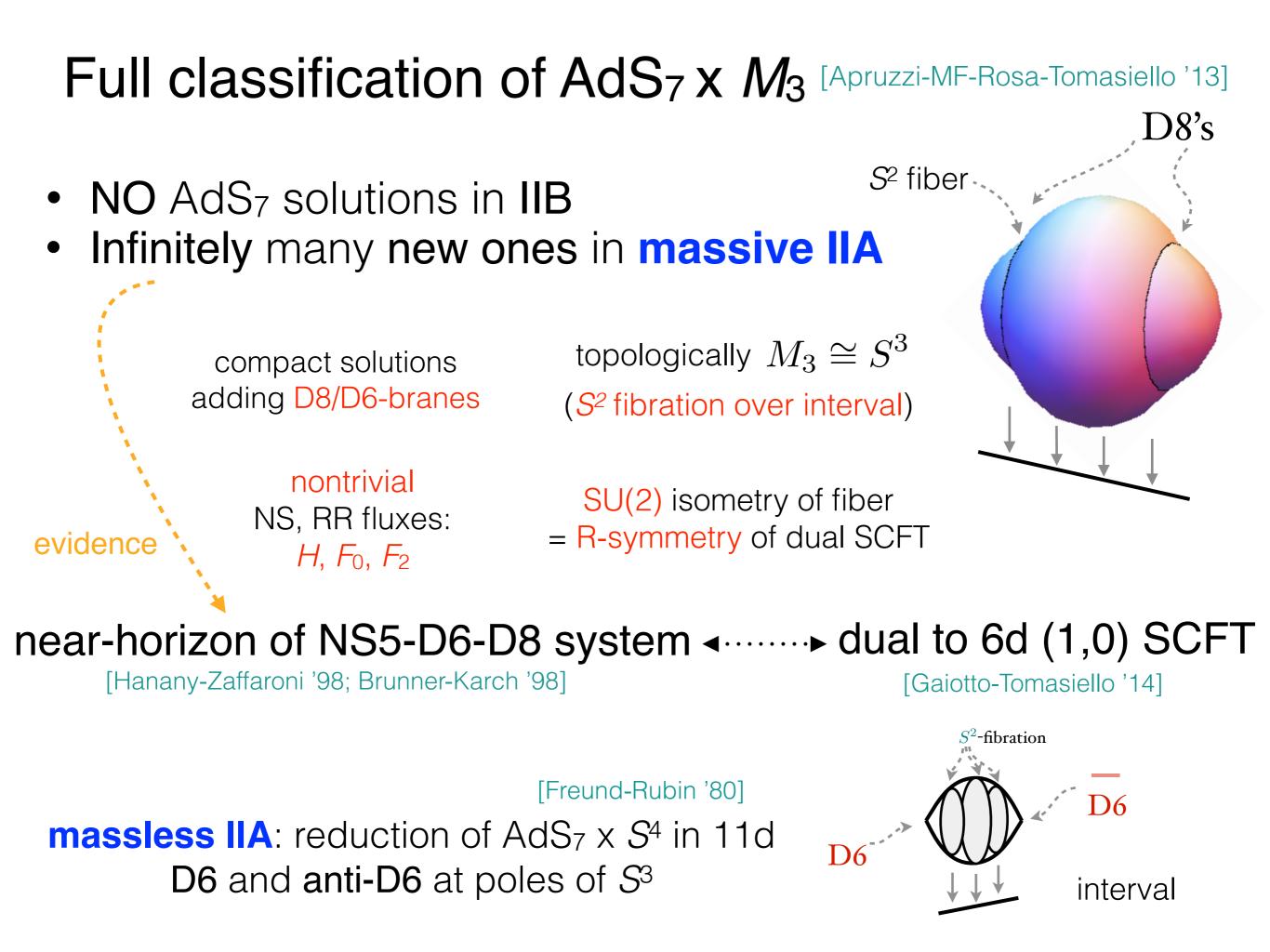
SU(2) isometry of fiber = R-symmetry of dual SCFT

Full classification of AdS₇ x M₃ [Apruzzi-MF-Rosa-Tomasiello '13] **8**'s S^2 fiber • NO AdS₇ solutions in IIB Infinitely many new ones in massive IIA topologically $M_3 \cong S^3$ compact solutions adding D8/D6-branes (S² fibration over interval) nontrivial SU(2) isometry of fiber NS, RR fluxes: = R-symmetry of dual SCFT H, F_0, F_2

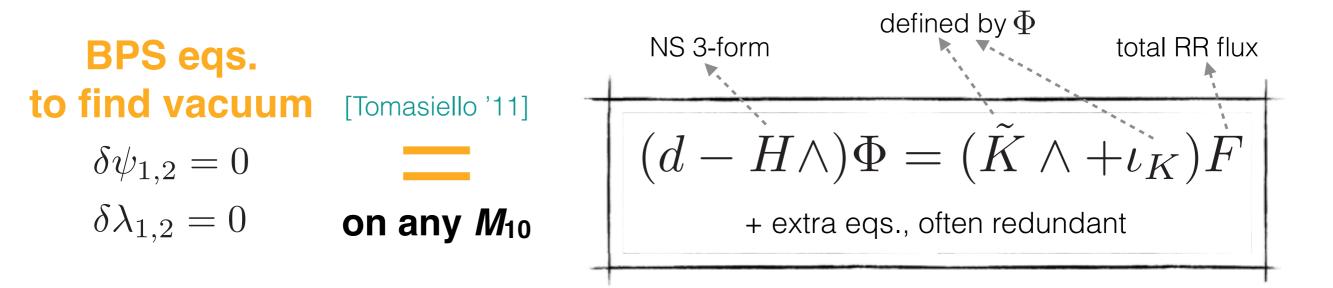


[Hanany-Zaffaroni '98; Brunner-Karch '98]

[Gaiotto-Tomasiello '14]

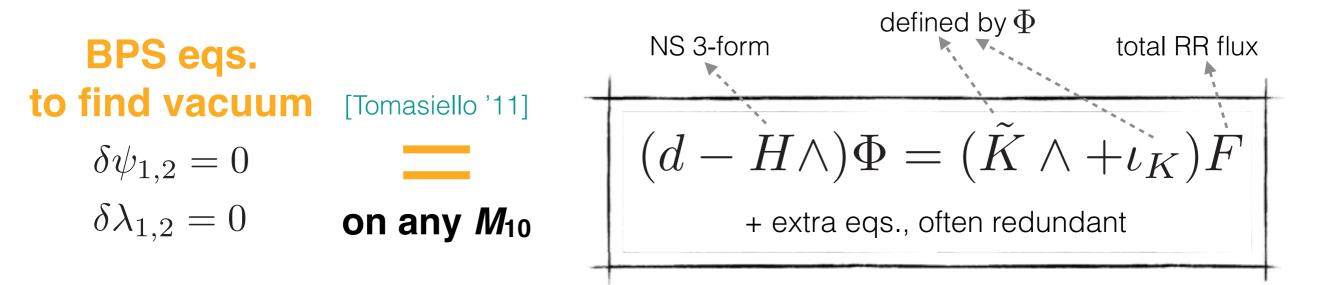


10d susy parameters $\epsilon_{1,2}$ define one **G-structure** Φ on $T\oplus T^*$



gives system of differential eqs. for forms on internal space

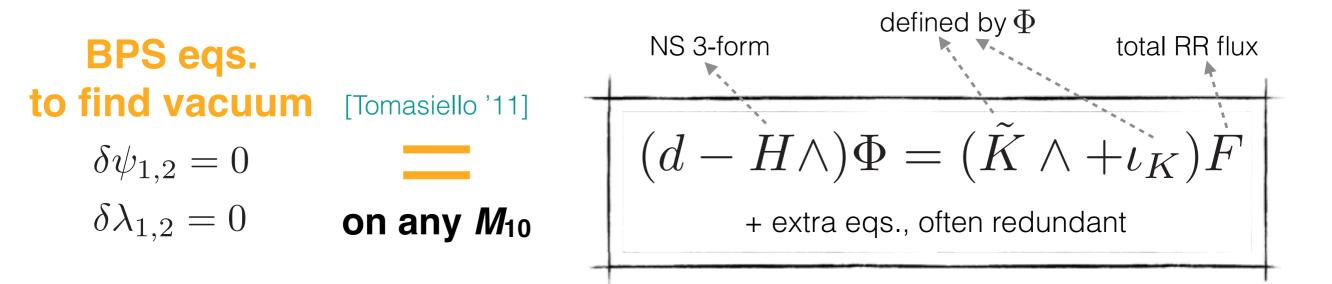
10d susy parameters $\epsilon_{1,2}$ define one **G-structure** Φ on $T\oplus T^*$



gives system of differential eqs. for forms on internal space

AdS₇ x M_3 Id. x Id. structure \supset Vielbein AdS₆ x M_4

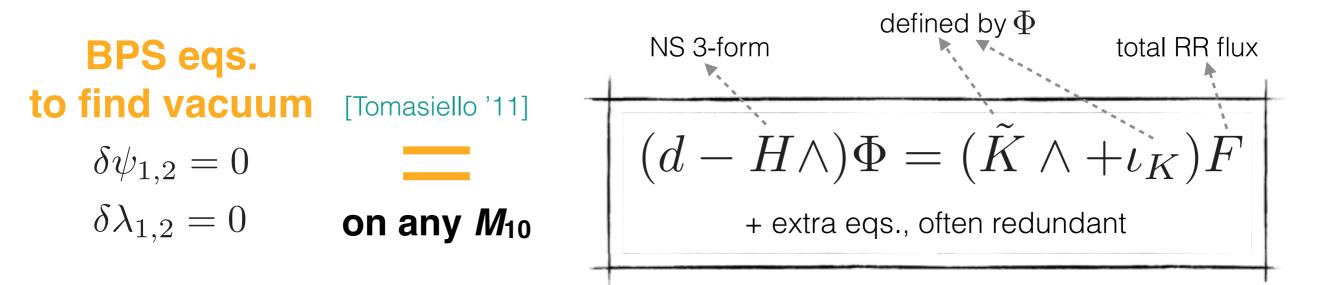
10d susy parameters $\epsilon_{1,2}$ define one **G-structure** Φ on $T\oplus T^*$



gives system of differential eqs. for forms on internal space

AdS₇ x M_3 AdS₆ x M_4 Id. x Id. structure \supset Vielbein **metric** on internal space!

10d susy parameters $\epsilon_{1,2}$ define one **G-structure** Φ on $T\oplus T^*$



gives system of differential eqs. for forms on internal space

AdS₇ x M_3 AdS₆ x M_4 Id. x Id. structure \supset Vielbein metric on internal space!

original example: AdS₄ X Mink₄ X M_6 [Graña-Minasian-Petrini-Tomasiello '05]

SU(3) x SU(3) structure (nice differential equations)

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4} F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0$$

$$\|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

A = warping F = total RR flux $d_H = d - H \wedge$

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4} F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0$$

$$\|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

A =warping F =total RR flux $d_H = d - H \wedge$

 $\eta^{1,2}$ 4d part of susy parameters

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4} F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0$$

$$\|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

A = warping F = total RR flux $d_H = d - H \wedge$

 $\eta^{1,2}$ 4d part of susy parameters Clifford map = $\begin{bmatrix} \gamma^{i_1...i_k} \\ \zeta \\ \\ dx^{i_1} \land ... \land dx^{i_k} \end{bmatrix}$

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4} F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0$$

$$\|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

A =warping F =total RR flux $d_H = d - H \wedge$

 $\eta^{1,2}$ 4d part of susy parameters Clifford map = $\begin{bmatrix} \gamma^{i_1...i_k} \\ \chi \\ dx^{i_1} & \chi \\ dx^{i_k} \end{bmatrix}$ $\Phi_{\pm} \Psi_{\pm}$

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4} F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0$$

$$\|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

A = warpingF = total RR flux $d_H = d - H \wedge$

 $\eta^{1,2}$ 4d part of susy parameters

Clifford map = $\begin{array}{c} \gamma^{i_1...i_k} \\ \zeta \\ dx^{i_1} \wedge \ldots \wedge dx^{i_k} \end{array}$

 $\Phi_+ \Psi_\pm$: **SU(2)-covariant** differential forms on M_4 0 SU(2)-singlet *up to factors of dilaton and warping $\alpha = 1, 2, 3$ SU(2)-triplet

$$d_{H}(\Psi_{-} - \Psi_{+})^{0} - 2(\Phi_{-} + \Phi_{+})^{0} = 0 \qquad A = \text{warping}$$

$$d_{H}(\Phi_{-} - \Phi_{+})^{\alpha} - 3(\Psi_{-} + \Psi_{+})^{\alpha} = 0 \qquad F = \text{total RR flux}$$

$$d_{H}(\Psi_{-} - \Psi_{+})^{\alpha} - 4(\Phi_{-} + \Phi_{+})^{\alpha} = 0 \qquad d_{H}(\Phi_{-} - \Phi_{+})^{0} - 5(\Psi_{-} + \Psi_{+})^{0} = - *_{4}F$$

$$d_{H}(\Psi_{-} + \Psi_{+})^{0} = 0 \qquad \|\eta^{1}\|^{2} = \|\eta^{2}\|^{2} = e^{A}$$

$$\eta^{1,2} \text{ 4d part of susy parameters}$$

$$Clifford map = \begin{bmatrix} \gamma^{i_{1}...i_{k}} \\ \partial \\ dx^{i_{1}} \wedge ... \wedge dx^{i_{k}} \end{bmatrix} \qquad SU(2) \text{ rotates supercharges} \begin{pmatrix} \eta_{\pm} \\ \eta_{\pm}^{c} \end{pmatrix}$$

$$\Phi_{\pm} \quad \Psi_{\pm}: \text{ SU}(2)\text{-covariant differential forms on } M_{4}$$

$$0 \quad SU(2)\text{-singlet}$$

$$\alpha = 1, 2, 3 \quad SU(2)\text{-triplet}$$

• Parametrizing the forms, we can solve the systems

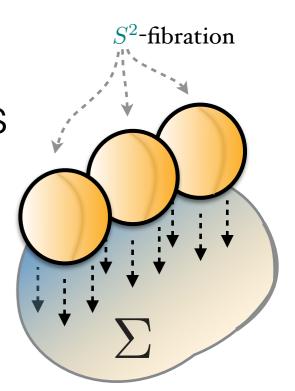
one Vielbein $\{e_i\}$ and 4 angles α , x, $S^2(\theta_1, \theta_2)$ generalized structure on M_4 M_4 is 4d • **Parametrizing** the forms, we can solve the systems one Vielbein $\{e_i\}$ and 4 angles α , x, $S^2(\theta_1, \theta_2)$

Determine explicitly metric on M₄ and fluxes

generalized structure on M₄

 M_4 = S^2 fibration over a 2d space $\Sigma(\alpha, x)$

nontrivial H, F₁, F₃



 M_4 is 4d

• **Parametrizing** the forms, we can solve the systems one Vielbein $\{e_i\}$ and 4 angles α , x, $S^2(\theta_1, \theta_2)$ generalized structure on M_4 M_4 is 4d

 S^2 -fibration

• **Determine explicitly** metric on *M*₄ and fluxes

 M_4 = S^2 fibration over a 2d space $\Sigma(\alpha, x)$

nontrivial H, F₁, F₃

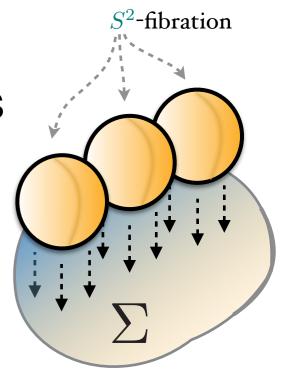
• All **Bianchi** (and EoM) for fluxes automatically satisfied (in AdS7, modify Bianchi to include D8/D6-brane sources) • **Parametrizing** the forms, we can solve the systems one Vielbein $\{e_i\}$ and 4 angles α , x, $S^2(\theta_1, \theta_2)$

• Determine explicitly metric on M₄ and fluxes

generalized structure on M₄

 $M_4 = S^2$ fibration over a 2d space $\Sigma(\alpha, x)$

nontrivial H, F₁, F₃



 M_4 is 4d

- M_4 has **SU(2) isometry** = **R-symmetry** of dual 5d CFT (N = 1 5d algebra unique. R-symmetry unique)
- All **Bianchi** (and EoM) for fluxes automatically satisfied (in AdS7, modify Bianchi to include D8/D6-brane sources)

So far: the pure spinor formalism has allowed us to solve (almost all) BPS equations, but... 2 differential equations still need to be solved: highly nonlinear PDEs

We reduced the classification problem to finding solutions to 2 PDEs^{*}

PDEs govern geometry of $\Sigma(\alpha,x)$

* in AdS7, easier story: "just" 3 ODEs admitting solutions with sources (magnetized D8's wrapping S^2 fiber in M_3)

So far: the pure spinor formalism has allowed us to solve (almost all) BPS equations, but... 2 differential equations still need to be solved: highly nonlinear PDEs

We reduced the classification problem to finding solutions to 2 PDEs^{*}

PDEs govern geometry of $\Sigma(\alpha,x)$

how many solutions?

(usual question for ODEs...)

* in AdS7, easier story: "just" 3 ODEs admitting solutions with sources (magnetized D8's wrapping S^2 fiber in M_3)

So far: the pure spinor formalism has allowed us to solve (almost all) BPS equations, but... 2 differential equations still need to be solved: highly nonlinear PDEs

We reduced the classification problem to finding solutions to 2 PDEs^{*}

PDEs govern geometry of $\Sigma(\alpha,x)$

how many solutions?

(usual question for ODEs...)

solution depends on 2 functions at the boundary of \sum : well-formed system

(using EDS machinery)

* in AdS7, easier story: "just" 3 ODEs admitting solutions with sources (magnetized D8's wrapping S^2 fiber in M_3)

[Brandhuber-Oz '99]

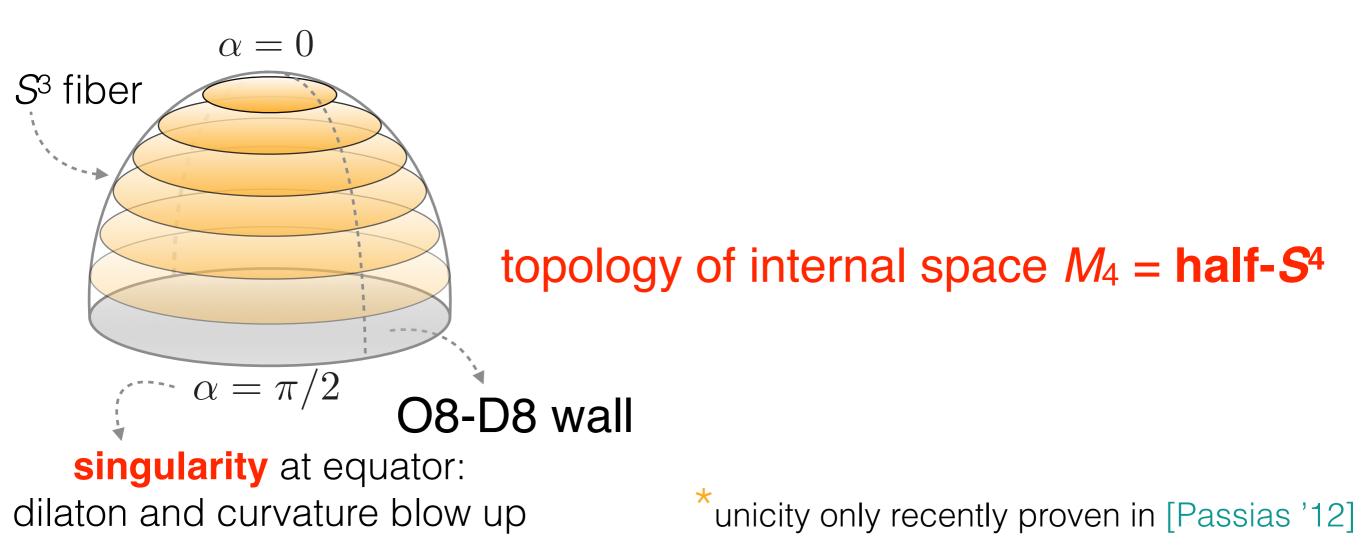
in massive IIA, there exists only one solution*:

near-horizon of ND4's probing O8 coincident with Nf D8's

[Brandhuber-Oz '99]

in massive IIA, there exists only one solution*:

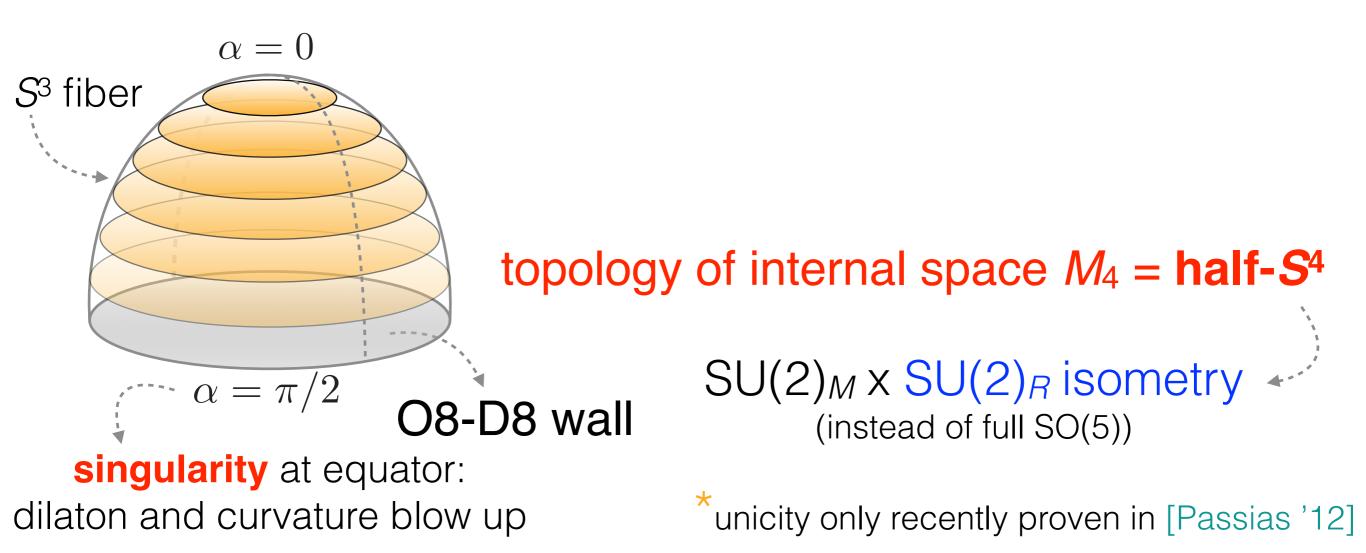
near-horizon of ND4's probing O8 coincident with Nf D8's



[Brandhuber-Oz '99]

in massive IIA, there exists only one solution*:

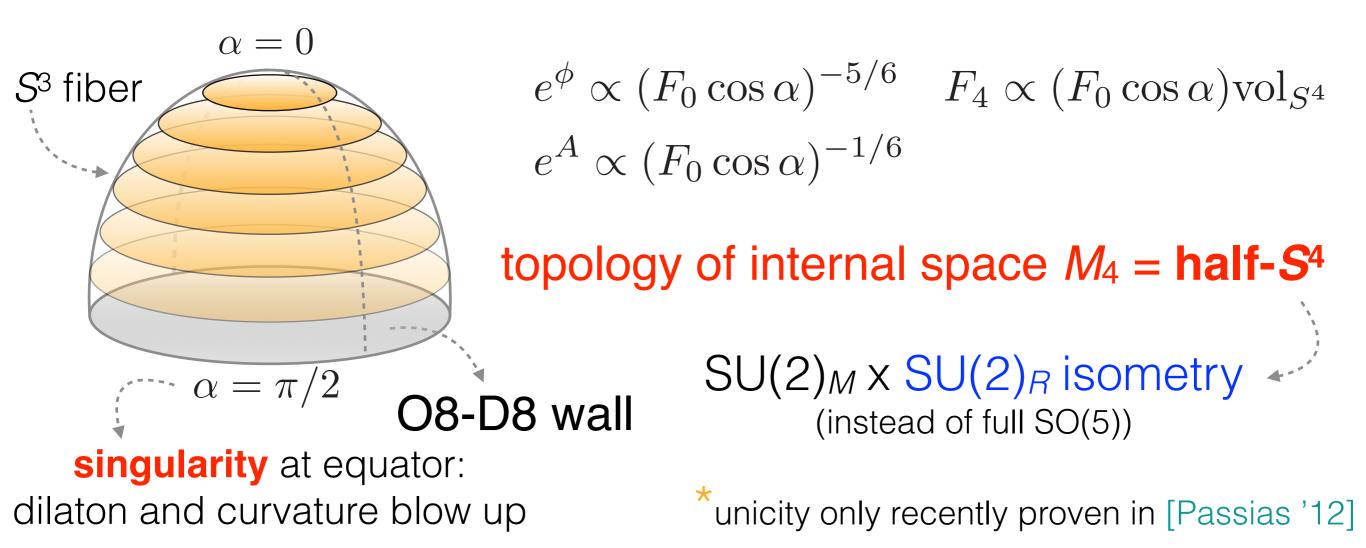
near-horizon of ND4's probing O8 coincident with Nf D8's



[Brandhuber-Oz '99]

in massive IIA, there exists only one solution*: near-horizon of N D4's probing O8 coincident with $N_{\rm f}$ D8's

easily recovered from our formalism: \blacksquare we read off the physical fields from the forms $\Phi_{\pm} \ \Psi_{\pm}$



Abelian T-dual of Brandhuber-Oz

this IIB background was first constructed via (Hopf) T-duality of BO Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

Abelian T-dual of Brandhuber-Oz

this IIB background was first constructed via (Hopf) T-duality of BO [Cvetic-Lu-Pope-Vazquez—Poritz '00; Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

In our language, it's an exact solution to the 2 PDEs which does not depend on the coordinate *x*

 $e^{\phi} \propto \sin^{-1} \alpha \cos^{-2/3} \alpha \quad e^A \propto \cos^{-1/6} \alpha$

(metric, fluxes are also determined)

this IIB background was first constructed via (Hopf) T-duality of BO Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

In our language, it's an exact solution to the 2 PDEs which does not depend on the coordinate *x*

 $e^{\phi} \propto \sin^{-1} \alpha \cos^{-2/3} \alpha \quad e^A \propto \cos^{-1/6} \alpha$

(metric, fluxes are also determined)

T-dualizing along a Hopf direction wrapped by a brane, one gets a **smeared brane** in dual background

this IIB background was first constructed via (Hopf) T-duality of BO [Cvetic-Lu-Pope-Vazquez—Poritz '00; Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

In our language, it's an exact solution to the 2 PDEs which does not depend on the coordinate *x*

$$e^{\phi} \propto \sin^{-1} \alpha \cos^{-2/3} \alpha \quad e^A \propto \cos^{-1/6} \alpha$$

(metric, fluxes are also determined)

T-dualizing along a Hopf direction wrapped by a brane, one gets a **smeared brane** in dual background

• inherits singularity at equator $\alpha = \frac{\pi}{2}$ of **dual** half-*S*⁴

this IIB background was first constructed via (Hopf) T-duality of BO [Cvetic-Lu-Pope-Vazquez—Poritz '00; Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

In our language, it's an exact solution to the 2 PDEs which does not depend on the coordinate *x*

$$e^{\phi} \propto \sin^{-1} \alpha \cos^{-2/3} \alpha \quad e^A \propto \cos^{-1/6} \alpha$$

(metric, fluxes are also determined)

smeared O7-D7

T-dualizing along a Hopf direction wrapped by a brane, one gets a **smeared brane** in dual background

smeared NS5

- inherits singularity at equator $\alpha = \frac{\pi}{2}$ of **dual** half-S⁴
- **new** singularity at $\alpha = 0$

[Lozano-O Colgain-Sfetsos-Thompson '11] one can perform a so-called **nonabelian T-duality** T-duality along nonabelian isometry

[Lozano-O Colgain-Sfetsos-Thompson '11] one can perform a so-called **nonabelian T-duality** T-duality along nonabelian isometry

[Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

 $SU(2)_R \subset SU(2)_M \times SU(2)_R$ of half- S^4 of BO

[Lozano-O Colgain-Sfetsos-Thompson '11] one can perform a so-called **nonabelian T-duality** T-duality along nonabelian isometry

[Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

 $SU(2)_R \subset SU(2)_M \times SU(2)_R$ of half- S^4 of BO

dual vacuum has noncompact internal space
begs for clear interpretation

* operators in dual CFT with continuous spectrum of dimension it might be possible to find an analytic continuation using the PDEs

[Lozano-O Colgain-Sfetsos-Thompson '11] one can perform a so-called **nonabelian T-duality** T-duality along nonabelian isometry

[Lozano-O Colgain-Rodriguez—Gomez-Sfetsos '13]

 $SU(2)_R \subset SU(2)_M \times SU(2)_R$ of half-S⁴ of BO

dual vacuum has noncompact internal space
begs for clear interpretation

Via a simple Ansatz, we recover it as solution to our PDEs

(same singularities as abelian T-dual vacuum)

operators in dual CFT with continuous spectrum of dimension
 it might be possible to find an analytic continuation using the PDEs

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to **two PDEs** in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to **two PDEs** in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We recovered the two already known vacua as **explicit solutions** to our PDEs

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to two PDEs in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We recovered the two already known vacua as **explicit solutions** to our PDEs

(incidentally, we proved that there are no solutions in massless IIA, nor in 11d sugra)

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to two PDEs in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We recovered the two already known vacua as **explicit solutions** to our PDEs

(incidentally, we proved that there are no solutions in massless IIA, nor in 11d sugra)

To-do list:

• find most general solution to PDEs

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to two PDEs in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We recovered the two already known vacua as **explicit solutions** to our PDEs

(incidentally, we proved that there are no solutions in massless IIA, nor in 11d sugra)

- find most general solution to PDEs
- modify Bianchi to include D-brane sources

We reduced the problem of finding $AdS_6 \times M_4$ vacua in IIB to two PDEs in two dimensions

 M_4 is an S^2 fibration over 2d space \sum geometry governed by PDEs

We recovered the two already known vacua as **explicit solutions** to our PDEs

(incidentally, we proved that there are no solutions in massless IIA, nor in 11d sugra)

- find most general solution to PDEs
- modify Bianchi to include D-brane sources
- establish correspondence between new IIB backgrounds and 5d SCFT's which admit a gravity dual