# probing fundamental physics with IceCube











The Niels Bohr International Academy

New Frontiers in Theoretical Physics, 28-31 May 2014, Cortona







Most of our knowledge of the universe comes from observing photons ... but above ~10 TeV they are attenuated through  $\gamma\gamma \rightarrow e^+e^-$  on the CIB



Using cosmic rays we can 'see' (if there are no magnetic fields) up to ~6 x 10<sup>10</sup> GeV (before they are attenuated  $p\gamma \rightarrow \Delta^+ \rightarrow n \pi^+$  on the CMB)

... but the universe is transparent to **neutrinos** at nearly *all* energies

# The Origin of Cosmic Rays

Extraordinary cosmic particle accelerators somewhere, but still poorly identified a century after the discovery of cosmic rays!

- Supernova remnants 🗸
- Active galactic nuclei?
- Gamma ray bursts ?
- Radio galaxy jets ?
- Starburst galaxies ?

Cosmic ray interactions with matter and photons, near source or during propagation, produce neutrinos:

$$p + N \rightarrow X + \{\pi^+, \pi^-, \pi^0\}$$
$$\pi^0 \rightarrow \gamma + \gamma$$
$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
$$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$$

Oscillations en-route to Earth can equibrate flavours so:  $v_e$ :  $v_u$ :  $v_\tau$ :: 1 : 1 : 1



So by detecting extraterrestrial neutrinos, we can study quantum mechanical oscillations over very long baselines ... *unaffected* by intervening dust, gas or magnetic fields **>** *new* probe of space-time



![](_page_3_Picture_2.jpeg)

### Bronshtein's 'cube of theories'

![](_page_4_Figure_1.jpeg)

"After the relativistic quantum theory is created, the task will be to develop the next part of our scheme, that is to unify quantum theory (with its constant h), special relativity (with constant c), and the theory of gravitation (with its G) into a single theory".

Matvei Petrovich Bronshtein (1906-38) For an update see: Duff, Okun & Veneziano [arXiv:physics/0110060]

May lead to modifications of space-time structure on the quantum gravity scale

$$\ell_{\rm P} \equiv \sqrt{\frac{\hbar G_{\rm N}}{c^3}} \simeq 1.6 \times 10^{-35} {\rm m} \Rightarrow 1.2 \times 10^{-35} {\rm m}$$

back-of-the-envelope ( $E_{\nu} \sim 10^{15} \text{ eV}$ ):  $\frac{\mathrm{d}^2 N_{\nu}}{\mathrm{d}t \,\mathrm{d}A} \sim \frac{1}{\mathrm{cm}^2 \times 10^5 \mathrm{yr}}$ • flux of neutrinos :  $\sigma_{\nu N} \sim 10^{-33} \mathrm{cm}^2$ cross section :  $N_N \sim N_A \times V/\mathrm{cm}^3$ targets: rate of events :  $\dot{N}_{\nu} \sim N_N \times \sigma_{\nu N} \times \frac{\mathrm{d}^2 N_{\nu}}{\mathrm{d}t \, \mathrm{d}A} \sim \frac{1}{\mathrm{year}} \times \frac{V}{1 \mathrm{km}^3}$ 

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_7_Picture_0.jpeg)

Photo: Haley Buffman

![](_page_8_Picture_0.jpeg)

### Weather for South Pole Station Today is Thursday, May 22nd 11:32am

![](_page_8_Picture_2.jpeg)

Temperature -70.6 °C -95.1 °F

Windchill -91.5 °C -132.7 °F

Wind 8.2 kts Grid 102

Barometer 682.7 mb (3,208 m/10,527 ft)

### Amundsen-Scott Station

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

### **Geographical South Pole**

Skiway

**Drill Camp** 

# The IceCube Collaboration

University of Alberta

Stockholm University **Uppsala Universitet** 

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

### International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

~250 scientists **40** institutions **11 countries** 

Deutsches Elektronen-Synchrotron (DESY) Inoue Foundation for Science, Japan Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

**Deutsches Elektronen-Synchrotron** Humboldt Universität **Ruhr-Universität Bochum RWTH Aachen University** Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

![](_page_10_Picture_14.jpeg)

![](_page_10_Picture_15.jpeg)

# IceCube Neutríno Observatory

IceTop: 1 km<sup>2</sup> surface array

### 86 strings

**60** Optical Modules per string

5160 Optical Modules in Ice

1 km<sup>3</sup> = Gton instrumented volume

### **Completed, began full operations May 2011**

![](_page_11_Figure_7.jpeg)

![](_page_11_Picture_8.jpeg)

# 2.5 km

# High Energy Neutrino Detection Principle

- $\succ$  A v interacts with a nucleus ... produces a  $\mu$  (*e* or  $\tau$ ) and/or a `cascade'
- > A charged particle moving at superluminal speed gives rise to Cherenkov radiation (cone  $\angle 40^{\circ}$ )
- > This radiation is detected by 3D array of optical sensors
- Position, time and amplitude of hits allows reconstruction of tracks using likelihood optimisation
  - The lepton direction is aligned with the incoming  $v \rightarrow$  astronomy!

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

Track topology (induced by  $\gamma_{\mu}$ )

Good pointing (~0.2° - 1°) but only *lower* bound on neutrino energy

Cascade topology (induced by e.g.  $v_e$ )

Good energy resolution (~15%) but poor pointing (~10° - 15°)

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

"on time"

delayed

## Neutríno signatures in IceCube

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

# Reach of IceCube Observatory

![](_page_15_Figure_1.jpeg)

### **TeV-EeV** (IceCube) SNR, micro-quasars, AGN, GRB, GZK ... neutrino astronomy!

## IceCube: Recent Highlights

- 2010 Dec: Construction completed
- 2011 May: IceCube begins full operations

**Recent Highlights:** 

- Dark Matter (Solar WIMP search) PRL 110:131302,2013 Best spin-dependent limits above 35 GeV
- **Neutrino oscillations** PRL 111:081801,2013 Detected at  $5\sigma \Rightarrow$  PINGU and the 'Neutrino Mass Hierarchy'
- **Flavour separation** PRL **110**:151105,2013 First measurements of atmospheric  $v_{\rho}$  above 100 GeV
- **PeV** neutrinos PRL 111:021103,2013 Highest energy neutrinos yet observed
- **High energy neutrino excess**

> 5 $\sigma$  Evidence of extraterrestrial origin Science 342:1242856,2013, arXiv:1405.5303

![](_page_17_Figure_0.jpeg)

### Lower energy threshold -3 GeV in Precision In-Ice Next Generation Upgrade

![](_page_18_Figure_1.jpeg)

# Precision In-Ice Next Generation Upgrade: PINGU

**Neutrino Mass Hierarchy measurement** (independently of  $\delta_{CP}$ ) is primary goal

Also sensitive to possible sterile neutrinos

40 string in-fill array Sensitivity down to ~3 GeV

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

Hierarchy signature is a distinctive structure in energy-angle plane

![](_page_19_Figure_7.jpeg)

Includes: estimated energy and angular resolution

# First Observation of PeV-energy Neutrinos

### ... discovered in search for GZK neutrinos

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

## First Observation of PeV-Energy Neutrinos

Combined analysis of **79-string data (1 year)** and first analysis of 86string data (1 year)

2 PeV events found in a search targeting much higher energy neutrinos (related to GZK cutoff)

**Expected background:** 0.08 ± 0.05 events

2.8  $\sigma$  excess

![](_page_21_Figure_5.jpeg)

![](_page_21_Picture_6.jpeg)

![](_page_22_Figure_0.jpeg)

There is an enormous background of cosmic ray muons going *down* (only *misreconstructed* muons apparently going up since muons are all absorbed in the Earth) Atmospheric neutrinos come from the *same* showers (1 in 10<sup>6</sup> events)

By using a veto for downgoing events, we remove the atmospheric neutrinos ... because we remove the muons coming from the *same* Cosmic Ray Air Shower

What's left is: PeV-EeV astrophysical neutrinos coming from above

NB: Doesn't work for upgoing, since the Earth absorbed the muons ... so Southern Sky (downgoing events) becomes the best channel.

![](_page_22_Figure_5.jpeg)

# 'High Energy Starting Events' analysis

Follow-up based on PeV events

**1.** Lower energy threshold, from ~PeV down to ~40 TeV

(Still very bright events ... require > 6000 photo-electrons for trigger)

2. Use outer-most layer of IceCube as a **veto** 

Removes atmospheric background (muon + neutrino) from above (Earth filters muon background **from below**)

(NB: track-events will be somewhat suppressed when using veto)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

# Re-discovery of Bert & Ernie

Atmospheric  $\mu$  background: 6 ± 3.4 Atmospheric *v* background: 4.6<sup>+3.7</sup><sub>-1.2</sub>

![](_page_24_Picture_2.jpeg)

... including the 2012-13 data we now have 37 events (988 day sample) (NB: Track events can have *higher* true energies than deposited energies)

![](_page_25_Figure_1.jpeg)

Deposited EM-Equivalent Energy in Detector (TeV)

![](_page_25_Picture_4.jpeg)

### Waveform Examples from modules at various positions in the detector:

![](_page_26_Figure_1.jpeg)

# High Energy Starting Event Analysis: Results

![](_page_27_Figure_1.jpeg)

### v-N deep inelastic scattering

$$\frac{\partial^2 \sigma_{\nu,\bar{\nu}}^{CC,NC}}{\partial x \partial y} = \frac{G_F^2 M E}{\pi} \left( \frac{M_i^2}{Q^2 + M_i^2} \right)$$

$$Q^2 \bigstar \text{propagator } \checkmark$$

$$\left[ \frac{1 + (1 - y)^2}{2} F_2^{CC,NC}(x, Q^2) - \frac{y^2}{2} F_L^{CC,NC}(x, Q^2) \right]$$

$$\pm y \left( 1 - \frac{y}{2} \right) x F_3^{CC,NC}(x, Q^2) \right]$$

$$Q^2 \bigstar \text{parton distrib. fns } \checkmark$$

Most of the contribution to #-secn comes from:  $Q^2 \sim M_W^2$  and  $x \sim \frac{M_W^2}{M_W E_W}$ 

At leading order (LO):  $F_{\rm L} = 0$ ,  $F_2 = x(u_{\rm v} + d_{\rm v} + 2s + 2b + \bar{u} + \bar{d} + 2\bar{c})$ ,  $xF_3 = x(u_v + d_v + 2s + 2b - \bar{u} - \bar{d} - 2\bar{c}) = x(u_v + d_v + 2s + 2b - 2\bar{c})$ At NLO in  $\alpha_s$ , it gets more complicated ... but is still calculable

![](_page_28_Picture_4.jpeg)

![](_page_29_Figure_0.jpeg)

Steep rise of the gluon structure function at low Bjorken  $x \Rightarrow$  significant impact on UHE v scattering The H1 and ZEUS experiments at HERA have made great progress by probing a much deeper kinematic region

![](_page_29_Figure_3.jpeg)

### The neutrino DIS cross-section can now be computed with reasonable (few %) accuracy @ NLO

![](_page_30_Figure_1.jpeg)

and there is good agreement between different PDF sets (after unphysical values are rejected)

But if there is a new phase of QCD at very low x ('Colour Glass Condensate') then the v-N #-secn would be suppressed below its (unscreened) SM value

![](_page_31_Figure_1.jpeg)

If IceCube can measure deep inelastic scattering of >10<sup>10</sup> GeV cosmogenic neutrinos, it would provide a probe of low-x QCD

# High Energy Starting Event Analysis: Results

*More* astrophysical events expected *from above* (South) because of Earth absorption at high energies ....

![](_page_32_Figure_2.jpeg)

The zenith angle distribution is consistent with an *isotropic* flux ... *not* with production in the atmosphere (e.g. by charm)

# High Energy Starting Event Analysis: Results

**Point Source Search (likelihood analysis)** 

![](_page_33_Figure_2.jpeg)

No significant clustering either on the sky or in time

| Title 🖂                                                                                                                                         | Author(s) 🖂                                           | Journal reference M          |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|-----|
| IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance                                                             | Barger, Learned, Pakvasa                              | PRD 87, 037302 (2013) 🗗      | 120 |
| Neutrino decays over cosmological distances and the implications for neutrino telescopes                                                        | Baerwald, Bustamante, Winter                          | JCAP10(2012)020 គ្នា         | 120 |
| On the interpretation of IceCube cascade events in terms of the Glashow resonance                                                               | Bhattacharya, Gandhi,<br>Rodejohann, Watanabe         |                              | 120 |
| PeV neutrinos from the propagation of ultra-high energy cosmic rays                                                                             | Roulet, Sigl, van Vliet, Mollerach                    | JCAP01(2013)028 &            | 120 |
| Explanation for the Low Flux of High-Energy Astrophysical Muon Neutrinos                                                                        | Pakvasa, Joshipura, Mohanty                           | PRL 110, 171802 (2013) 🗗     | 120 |
| On the origin of IceCube's PeV neutrinos                                                                                                        | Cholis, Hooper                                        | JCAP06(2013)030 鹵            | 121 |
| Diffuse PeV Neutrinos from Gamma-ray Bursts                                                                                                     | Liu, Wang                                             | ApJ 766, 73 (2013) 🗗         | 121 |
| Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons                                                                                | Kistler, Stanev, Yuksel                               |                              | 130 |
| PeV Neutrinos from Intergalactic Interactions of Cosmic Rays Emitted by Active Galactic<br>Nuclei                                               | Kalashev, Kusenko, Essey                              | PRL 111, 041103 (2013) 화     | 130 |
| Diffuse PeV neutrino emission from ultraluminous infrared galaxies                                                                              | He, Wang, Fan, Liu, Wei                               | PRD 87, 063011 (2013) 🗗      | 130 |
| Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV<br>neutrinos                                             | Borriello, Chakraborty, Mirizzi,<br>Serpico           | PRD 87, 116009 (2213) 🗗      | 130 |
| Neutrinos at IceCube from heavy decaying dark matter                                                                                            | Feldstein, Kusenko, Matsumoto,<br>Yanagida            | PRD 88, 015404 (2013), 2     | 130 |
| Galactic PeV Neutrinos                                                                                                                          | Gupta                                                 | //Ph 48 75 (2013) <u>중</u> 7 | 130 |
| Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy                                                                                   | Fox, Kashiyama, Meszaros                              | Ap. 74, 74 (2013) எ          | 130 |
| Superheavy Particle Origin of IceCube PeV Neutrino Events                                                                                       | Barger, Keung                                         |                              | 130 |
| PeV neutrinos observed by IceCube from cores of active galactic nuclei                                                                          | Stucker                                               | PRD 88, 047301 (2013) 🗗      | 130 |
| The fraction of muon tracks in cosmic neutrinos                                                                                                 | Vissani, Pagliardii, Villante                         | JCAP09(2013)017 6            | 130 |
| TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars                                                                              | Murase, loka                                          | PRL 111, 121102 (2013) 🗗     | 130 |
| Demystifying the PeV cascades in IceCube: Less (energy) is more (events)                                                                        | Lona, Beacom, Dasgupta,<br>Horiuchi, Murase           | PRD 88, 043009 (2013) 🗗      | 130 |
| Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCrbe                                                                          | Murase, Ahlers, Lacki                                 |                              | 130 |
| Pinning down the cosmic ray source mechanism with new Ict Cube data                                                                             | Anchordoqui, Goldberg, Lynch,<br>Olinto, Paul, Weiler |                              | 130 |
| Constraining Superluminal Electron and Neurono Yelocities using the 2010 Crab Nebula<br>Flare and the IceCube PeV Neutrino Everys               | Stecker                                               |                              | 130 |
| TeV-PeV neutrinos over the atmospheric background: originating from two groups of<br>sources?                                                   | He, Yang, Fan, Wei                                    |                              | 130 |
| The Galactic Pevatron                                                                                                                           | Neronov, Semikoz, Tchernin                            |                              | 130 |
| Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube                                                                               | Winter                                                | PRD 88, 083007 (2013) 🗗      | 130 |
| Pseudo-Dirac neutrinos via mirror-world and depletion of UHE neutrinos                                                                          | Joshipura, Mohanty, Pakvasa                           |                              | 130 |
| Long-lived PeV-EeV Neutrinos from GRB Blastwave                                                                                                 | Razzaque                                              |                              | 130 |
| Are IceCube neutrinos unveiling PeV-scale decaying dark matter?                                                                                 | Esmaili, Sercipo                                      |                              | 130 |
| Establishing the astrophysical origin of a signal in a neutrino telescope                                                                       | Lipari                                                |                              | 130 |
| Testing Relativity with High-Energy Astrophysical Neutrinos                                                                                     | Diaz, Kostelecky, Mewes                               |                              | 130 |
| A Simple Explanation of the Ultra-high Energy Neutrino Events at IceCube                                                                        | Chen, Bhupal Dev, Soni                                |                              | 130 |
| Galactic Center origin of a subset of IceCube neutrino events                                                                                   | Razzaque                                              | PRD 88, 081302(R) (2013) 🗗   | 130 |
| Probing the Galactic Origin of the IceCube Excess with Gamma-Rays                                                                               | Ahlers, Murase                                        |                              | 130 |
| Diffuse PeV neutrinos from hypernova remnants in star-forming galaxies                                                                          | Liu, Wang, Inoue, Crocker,<br>Aharonian               |                              | 131 |
| Revolution at ICECUBE horizons                                                                                                                  | Fargion, Paggi                                        |                              | 131 |
| Diffuse Neutrino Flux from Cosmic Ray Interactions in the Milky Way                                                                             | Joshi, Winter, Gupta                                  |                              | 131 |
| GeV - PeV Neutrino Production and Oscillation in hidden jets from GRBs                                                                          | Fraija                                                |                              | 131 |
| Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario                                                                  | Rajpoot, Sahu, Wang                                   |                              | 131 |
| Reevaluation of the Prospect of Observing Neutrinos from Galactic Sources in the Light<br>of Recent Results in Gamma Ray and Neutrino Astronomy | Gonzalez-Garcia, Halzen, Niro                         |                              | 131 |
| Self-consistent neutrino and UHE cosmic ray spectra from Mrk 421                                                                                | Dimitrakoudis, Petropoulou,<br>Mastichiadis           |                              | 131 |

| ArXiv   |          | Category M                            |
|---------|----------|---------------------------------------|
| 07.4571 | ø        | Glashow resonance                     |
| 08.4600 | æ        | Neutrino decay; track<br>deficit      |
| 9.2422  | đ        | Glashow resonance                     |
| 9.4033  | ø        | GZK                                   |
| 09.5630 | P        | Neutrino decay; track<br>deficit      |
| 11.1974 | P        | Extragalactic (GRB)                   |
| 12.1260 | ď        | Extragalactic (GRB)                   |
| 01.1703 | ď        | Extragalactic                         |
| 03.0300 | ഭ        | Extragalactic (AGN)                   |
| 03.1253 | ø        | Extragalactic (Infrared galaxies)     |
| 03.5843 | P        | Lorentz invariance                    |
| 03.7320 | ഭ        | Exotic (dark matter decay)            |
| 05.4123 | P        | Galactic                              |
| 05.6606 | P        | Galactic                              |
| 05.6907 | ്മ       | Exotic (Leptoquark)                   |
| 05.7404 | ති       | Extragalactic (AGN)                   |
| 06.0211 | e۶       | Future strategy                       |
| 06.2274 | đ        | Extragalactic (GRB)                   |
| 06.2309 | ഭ        | Future strategy                       |
| 06.3417 | ď        | Extragalactic                         |
| 06.5021 | ്മ       | Galactic                              |
| 06.6095 | æ        | Lorentz invariance                    |
| 07.1450 | ഭ        | Two source populations                |
| 07.2158 | ď        | Galactic                              |
| 07.2793 | ď        | Extragalactic                         |
| 07.5712 | <u>ه</u> |                                       |
| 07.7596 | ്മ       | Extragalactic (GRB)                   |
| 08.1105 | œ        | Exotic (dark matter decay)            |
| 08.2086 | ෂ        |                                       |
| 08.6344 | œ        | Lorentz invariance                    |
| 09.1764 | đ        |                                       |
| 9.2756  | \$       | Galactic                              |
| 09.4077 | \$       | Galactic                              |
| 10.1263 | đ        | Extragalactic (star-forming galaxies) |
| 10.3543 | \$       | Track deficit                         |
| 10.5123 | P        | CR interactions                       |
| 10.7061 | œ        | Extragalactic (GRB)                   |
| 10.7075 | ď        | Exotic (sterile neutrinos)            |
| 10.7194 | ഭ        | Galactic                              |
| 10.7923 | P        | Extragalactic (Blazar,<br>Mrk421)     |

# Very long baseline v oscillations

Low energy neutrino experiments have a sensitivity of at most:  $\Gamma/m \sim 10^{-4} \text{ sec/eV} \dots$  for Solar neutrinos

### High energy cosmic neutrinos can improve on this by a factor of: $\sim 10^{6} (L/100 \text{ Mpc}) (100 \text{ TeV/E})$ $\Rightarrow$ powerful probe of decoherence/LI violation

Astrophysical accelerators generate neutrinos through pion decay so neutrinos produced in the ratio:  $v_e : v_u : v_\tau = 1 : 2 : 0$ After flavour *equilibration* through oscillations, this becomes:  $v_{e}: v_{u}: v_{\tau} \approx 1:1:1$ 

... but interaction with e.g. 'space-time foam' can change this!

# New physics effects in neutrino oscillations

- Violation of Lorentz invariance (VLI) in string theory or loop quantum gravity\*
- Violations of the equivalence • principle (different gravitational coupling)<sup>†</sup>
- Interaction of particles with space-time foam v quantum decoherence of flavor states<sup>‡</sup>

\* e.g. Carroll et al., PRL 87 (2001) 14, Colladay and Kostelecký, PRD 58 (1998) 116002 <sup>+</sup>e.g. Gasperini, PRD 39 (1989) 3606 <sup>‡</sup> e.g. Anchordoqui *et al.*, PRD 72 (2005) 065019

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

 $C \sim V_{1}$ 

 $C \sim V_2$ 

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

![](_page_36_Picture_9.jpeg)

# Ouantum decoherence induced by 'space-time foam'

Study propagation using density ("dollar") matrix formalism:

 $\dot{\rho} = -i[H,\rho] + \delta H \rho . \quad \mbox{(modelled a la ' Lindblad)}$ 

Then solve equations for neutrinos to get oscillation probability:

$$P \left[\nu_{\mu} \to \nu_{\tau}\right] = \frac{1}{2} \left\{ 1 - \cos^{2}(2\theta) M_{33}(E, L) - \sin^{2}(2\theta) M_{33}(E, L) - \sin^{2}(2\theta) M_{33}(E, L) - \frac{1}{2} \sin 4\theta \left[ M_{13}(E, L) + M_{31}(E, L) \right] \right\},$$

$$M(E, L) = \exp \left[ -2\mathcal{H}(E)L \right] \quad \mathcal{H}(E) = \begin{pmatrix} a & b - b + \frac{\Delta m^{2}}{4E} \\ b + \frac{\Delta m^{2}}{4E} \\ d \end{pmatrix}$$
e.g. Morgan *et al* [astro-ph/0412628]

![](_page_37_Picture_5.jpeg)

## $M_{11}(E,L)$

![](_page_37_Picture_10.jpeg)

## ... extend to 3-flavour neutríno oscíllatíons

$$P[\nu_{\mu} \to \nu_{\mu}] = \frac{1}{3} + \frac{1}{2} \left( e^{-\gamma_{3}L} \cos^{4}\theta_{23} + \frac{1}{12} e^{-\gamma_{8}L} (1 - 3\cos 2\theta_{23})^{2} + 4e^{-\frac{\gamma_{6}+\gamma_{7}}{2}L} \cos^{2}\theta_{23} \sin^{2}\theta_{23} \left( \cos \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \sin \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \sin \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \sin \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \sin \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \sin \left[ \frac{L}{2} \sqrt{\left| (\gamma_{6} - \gamma_{7})^{2} - \left( \frac{\Delta}{2} + \cos \left[ \frac{\Delta}{2} + \cos \left[$$

Barenboim et al. [hep-ph/0603028]

Energy dependence depends on phenomenology:  $\gamma_i = \gamma_i^* E^n, \ n \in \{-1, 0, 2, 3\}$ *n* = 2 *n* = 0 recoiling simplest D-branes Ellis *et al.* [hep-th/9704169] Anchordoqui *et al.* [hep-ph/0506168]

IceCube is sensitive to a dim-6 ( $\sim E^3/M_P^2$ ) violation of Lorentz invariance/decoherence!

### *n* = 3 **Planck-suppressed** operators

![](_page_38_Picture_9.jpeg)

![](_page_38_Picture_10.jpeg)

# The IceCube physics program

![](_page_39_Figure_1.jpeg)

Diffuse/ atmospheric

1. 10

neutrino signal

### Point source

Search for point-like sources  $\rightarrow$  galactic (e.g. SNR)

 $\rightarrow$  extragalactic (e.g. AGN)

Transient sources → GRB, flaring objects

Optical follow-up programs

**GZK** neutrinos

Prompt atms. neutrinos

![](_page_39_Picture_12.jpeg)

Neutrino oscillations

### Cosmic ray physics

Dark Matter Exotic particles

![](_page_39_Picture_16.jpeg)

![](_page_39_Figure_17.jpeg)

![](_page_39_Figure_18.jpeg)

![](_page_39_Figure_19.jpeg)

### First analyses of data from completed IceCube detector consistent with detection of extraterrestrial neutrino flux (at > 5σ confidence)

![](_page_40_Picture_1.jpeg)

The real voyage of discovery consists not in seeking new lands ... but in seeing the world with new eyes.

# **Marcel Proust**