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Introduction

Bogomolny equation
DO = xF

Hyperbolic space
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Plan of the talk

Relation between instantons and Hyperbolic monopoles
(Atiyah)

Hyperbolic monopoles from JNR data (Manton-Sutcliffe)
Twistor methods: spectral curve and rational map

Examples of multi-monopole solutions (dihedral and cyclic
symmetries, scattering families)



Conformalities and invariant instantons
IB )Z4_

ds* = dxi+dx; + dvi + da; “/z\/j
1
- (dx2 + ) (da:% +das + d?"Z))
.
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Conformalities and invariant instantons
2/5 ) Z4

ds* = dxi+dx; + dvi + da; O(/i%\[
1
- (dx2 + ) (da;'% +das + dr2))
]

[ R4 _RR2is conformal equivalent to S* x H?. }
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Ball and Poincare

dX7 + dX35 + dX3)

d82 (HS) — 4(

(1— R2)?

X"XZ/X%

28/05/14 Hyperbolic monopoles, JNR data and spectral curves



Ball and Poincare

152 (H) = 4(dX7 + dX5 + dX3)

(1— R2)?

v

% (dzi + dx3 + dr?)

X"XZ/X%
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Circle invariant instantons

[ = 20N



Circle invariant instantons

>] é}Nm/w

Instanton number Monopole charge

Higgs vev (half integer)
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't Hooft and JNR ansatz

2 .
A, = §JW8VQ o = log 1

Y is an arbitrary harmonic function
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Circle Invariance, poles and weigths

t Hooft ansatz

Z//‘ZZ
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Circle Iinvariance poles and weights

Jackiw-Nohl-Rebbi (JNR) ansatz

Reduces to ‘t Hooft for \j = 1 + |’}/o|2 —r OO



Explicit solution

Higgs field
(DQ_TQ % 2+ 9 2+ E+@)2>
. HWEAN\Om O ro or
Energy density

1 5
&=—=0 19| D|



Two limitations

1) The Higgs vev is fixed by the v = 1/2, andso [ = N



Two limitations

1) The Higgs vev is fixed by the v = 1/2, andso [ = N

2) We can access only a subset of the full moduli

dim(MY®) = 3N 4+2 < AN —1 = dim(My)



An example: one monopole
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G

geodesic connecting the two poles
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Twistor space

(n.¢) € CP' x CP'
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Twistor space

(n,¢) € CP' x CP'

Scattering equation (Ds; —i®)w =0
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Holomorphic data

The spectral curve is a bi-holomorphic curve of degree N x N

N

Z Cz’jni 7 =0

i=0,j=0

Corresponds to the set of geodesics where the scattering
equation has normalizable solutions



Holomorphic data

For example the one-monopole has spectral curve

2nC(X, —iXy) +C(14+ R? —2X3) —n(1+ R* +2X3) — 2(X; +iX,) =0



Spectral curve for generic JNR monopole

Using ADHM we can compute the explicit spectral
curve for any JNR monopole:




Rational map

Analogue of the Donaldson rational map in flat space
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Tetrahedral monopole

Poles are placed at the roots of the Klein polynomial
To(y) =4* + 2ivV3y2 + 1

with canonical weights A7 = 1+ |75/’



Tetrahedral monopole

Energy density level:

&\

Spectral curve: (n—¢)%+ %(n +OMC+ D¢ —1) =0



Dihedral one-parameter families
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Dihedral one-parameter families
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D2 three monopole
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D2 three monopole
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D2 three monopole
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D2 three monopole
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D4 five-monopole family

/'\/0 — O, f'}/l p— ]-; f'}/g — —]_j '}/3 — Z ,.}/4 — _Z ,-}/5 — O PG
0
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D4 five-monopole family
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Tetrahedral seven monopole
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Cyclic and Dihedral
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Cyclic three monopole
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Boundary data

. _ 1
Gauge field at the boundary of the hyperbolic space A. = 5@ log h

Where h(z, 2) IS a hermitian metric given by



Boundary data

. , 1
Gauge field at the boundary of the hyperbolic space A. = 5@: log h

Where h(z, 2) IS a hermitian metric given by

\ N \
JESEDIRYE | IEERARERt Y | EE
7=0 k=0 k=0
k#]

All the information is encoded in the boundary




Moduli space metric
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Moduli space metric

The usual notion of metric diverges in hyperbolic space

We can define a reqularized version, essentially the UV divergent part

We can compute this explicitly for any JNR.
For one monopole for example it reproduces the hyperbolic metric

i1 + ZtQ — N t3 = M\

dts + dts + dt}

gu,f/dtp,dtu — +2
'3
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Conclusion

* JNR ansatz can be used to construct a big family of
explicit monopole solutions in hyperbolic space

* Holomorphic data, such as spectral curves and rational
maps can be computed explicitly

* We showed many one-parameter families of dihedral and
cyclic monopoles, analogue to scattering solutions in flat

space



