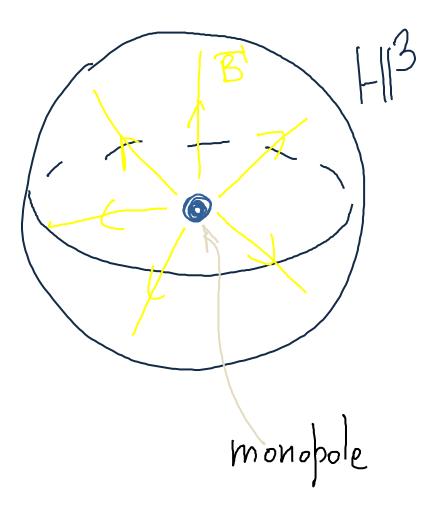
Hyperbolic monopoles, JNR data and spectral curves

S. Bolognesi Universita' di Pisa

Based on arXiv:1404.1846 with A. Cockburn and P. Sutcliffe

1

Introduction



Bogomolny equation

 $D\Phi = *F$

Hyperbolic space

$$ds^{2}(\mathbb{H}^{3}) = \frac{4(dX_{1}^{2} + dX_{2}^{2} + dX_{3}^{2})}{(1 - R^{2})^{2}}$$

 Relation between instantons and Hyperbolic monopoles (Atiyah)

- Relation between instantons and Hyperbolic monopoles (Atiyah)
- Hyperbolic monopoles from JNR data (Manton-Sutcliffe)

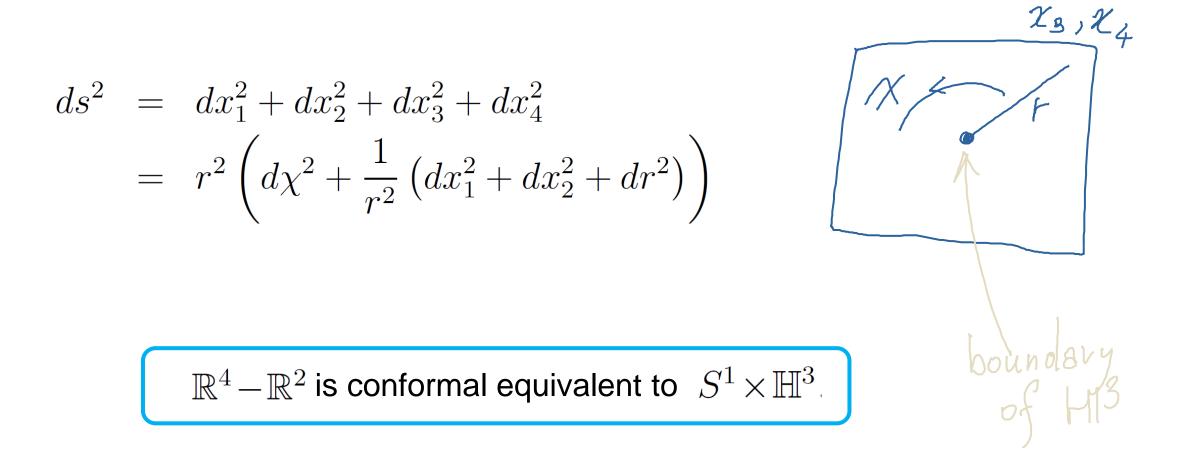
- Relation between instantons and Hyperbolic monopoles (Atiyah)
- Hyperbolic monopoles from JNR data (Manton-Sutcliffe)
- Twistor methods: spectral curve and rational map

- Relation between instantons and Hyperbolic monopoles (Atiyah)
- Hyperbolic monopoles from JNR data (Manton-Sutcliffe)
- Twistor methods: spectral curve and rational map
- Examples of multi-monopole solutions (dihedral and cyclic symmetries, scattering families)

Conformalities and invariant instantons

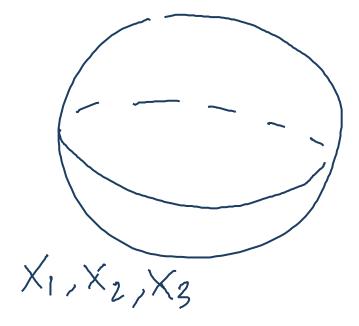
$$ds^{2} = dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} + dx_{4}^{2}$$
$$= r^{2} \left(d\chi^{2} + \frac{1}{r^{2}} \left(dx_{1}^{2} + dx_{2}^{2} + dr^{2} \right) \right)$$

Conformalities and invariant instantons



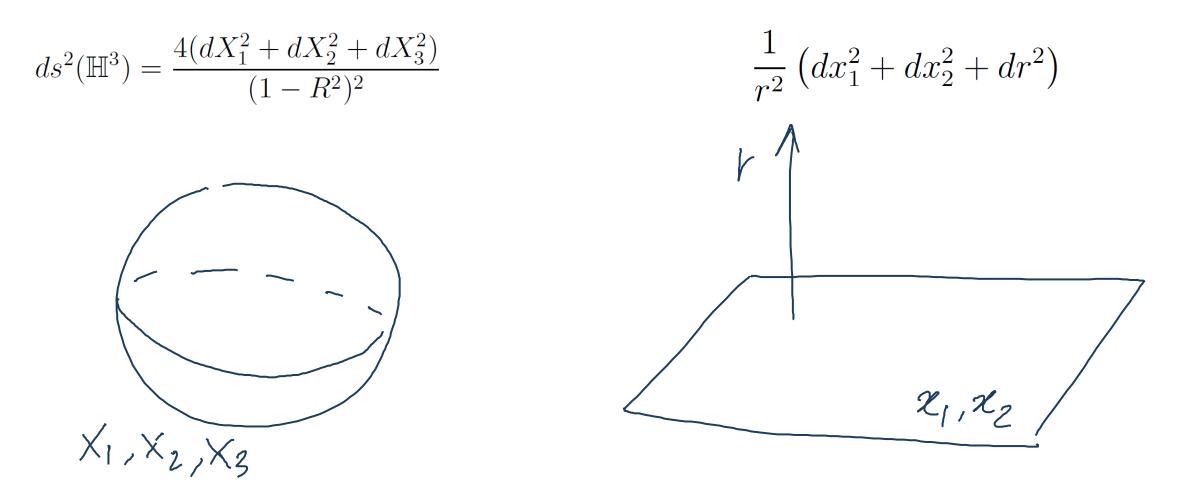
Ball and Poincare

$$ds^{2}(\mathbb{H}^{3}) = \frac{4(dX_{1}^{2} + dX_{2}^{2} + dX_{3}^{2})}{(1 - R^{2})^{2}}$$



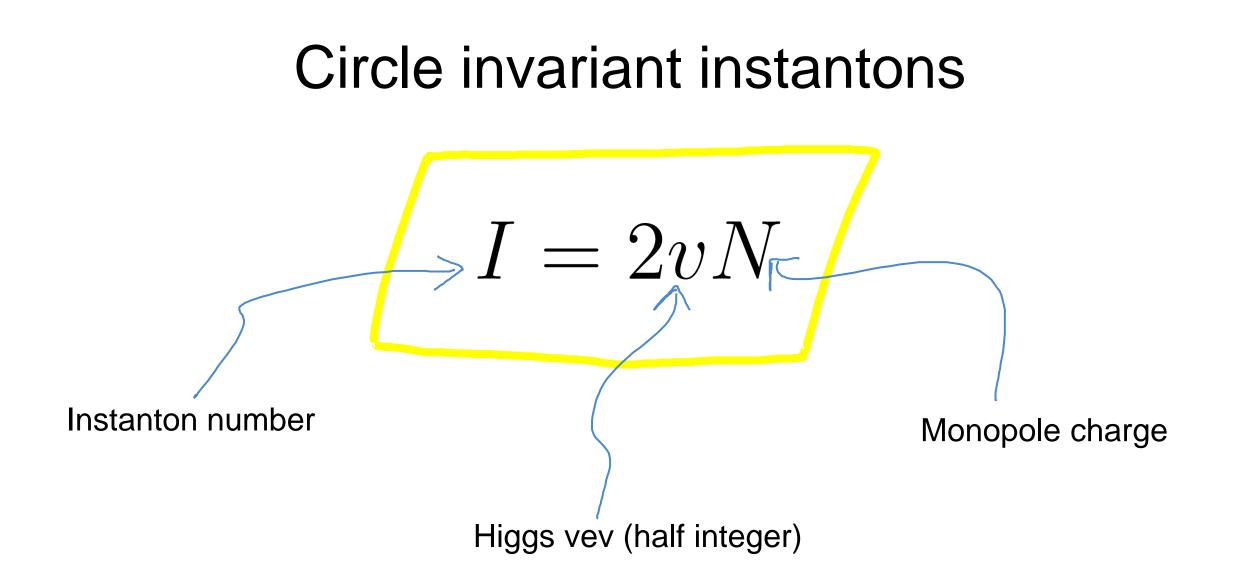
Hyperbolic monopoles, JNR data and spectral curves

Ball and Poincare



Circle invariant instantons

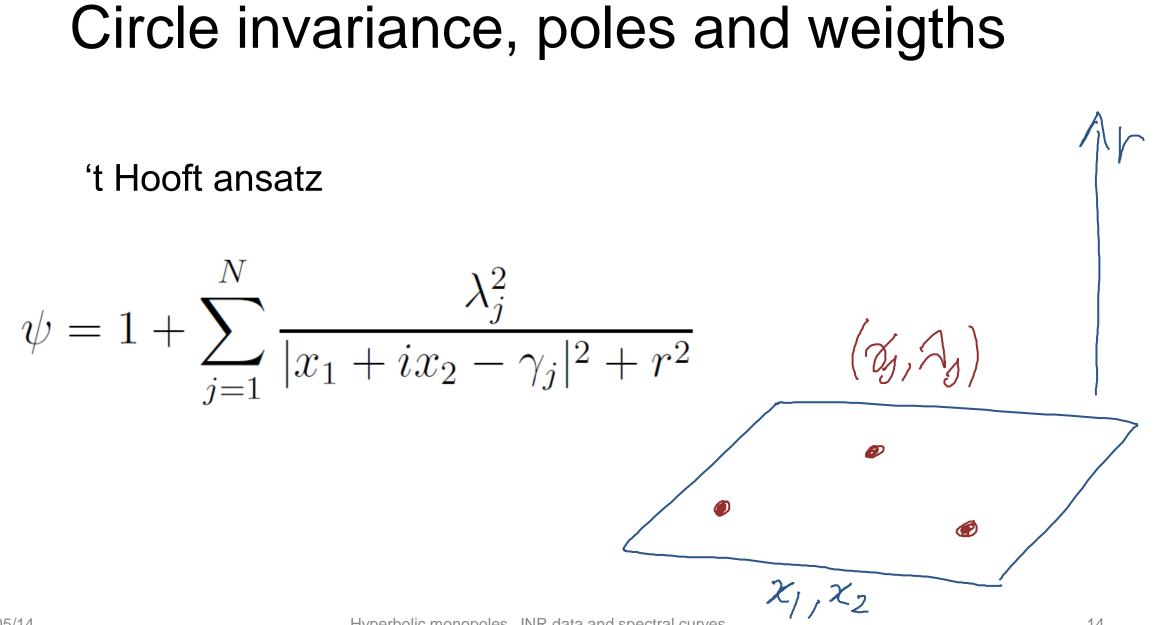
I = 2vN



't Hooft and JNR ansatz

$$A_{\mu} = \frac{i}{2} \sigma_{\mu\nu} \partial_{\nu} \varrho \qquad \varrho = \log \psi$$

ψ is an arbitrary harmonic function



Circle invariance poles and weights

Jackiw-Nohl-Rebbi (JNR) ansatz

$$\psi = \sum_{j=0}^{N} \frac{\lambda_j^2}{|x_1 + ix_2 - \gamma_j|^2 + r^2}$$

Reduces to 't Hooft for
$$\ \lambda_0^2 = 1 + |\gamma_0|^2 o \infty$$

Explicit solution

Higgs field

$$|\Phi|^{2} = \frac{r^{2}}{4\psi^{2}} \left(\left(\frac{\partial\psi}{\partial x_{1}} \right)^{2} + \left(\frac{\partial\psi}{\partial x_{2}} \right)^{2} + \left(\frac{\psi}{r} + \frac{\partial\psi}{\partial r} \right)^{2} \right)$$

Energy density $\mathcal{E} = \frac{1}{\sqrt{g}} \partial_i \left(\sqrt{g} g^{ij} \partial_j |\Phi|^2 \right)$

Two limitations

1) The Higgs vev is fixed by the $v\,=\,1/2$, and so $I\,=\,N$

Two limitations

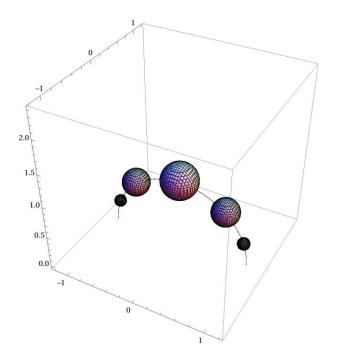
1) The Higgs vev is fixed by the $v\,=\,1/2$, and so $I\,=\,N$

2) We can access only a subset of the full moduli

$$\dim(\mathbb{M}_N^{\text{JNR}}) = 3N + 2 < 4N - 1 = \dim(\mathbb{M}_N)$$

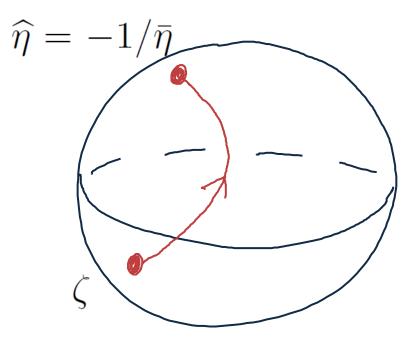
An example: one monopole

$$\zeta = \frac{\lambda_0}{|x_1 + ix_2 - \xi_0|^2 + r^2} + \frac{\lambda_1}{|x_1 + ix_2 - \xi_1|^2 + r^2}$$



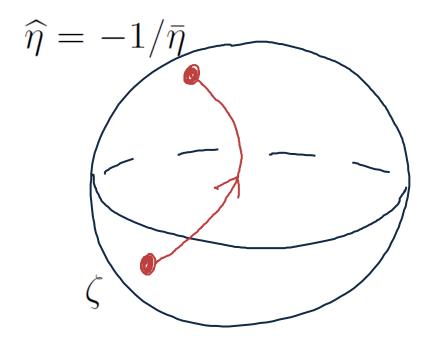
geodesic connecting the two poles

Twistor space



$(\eta,\zeta)\in\mathbb{CP}^1\times\mathbb{CP}^1$

Twistor space



 $(\eta,\zeta)\in\mathbb{CP}^1\times\mathbb{CP}^1$

Scattering equation $(D_s - i\Phi)w = 0$

.

Holomorphic data

The spectral curve is a bi-holomorphic curve of degree N x N

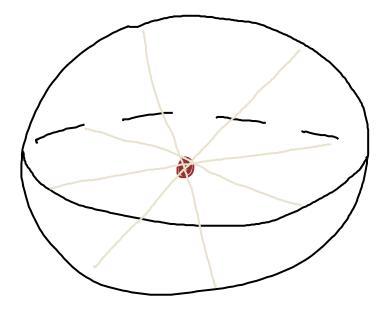
$$\sum_{i=0,j=0}^{N} c_{ij} \eta^i \zeta^j = 0$$

Corresponds to the set of geodesics where the scattering equation has normalizable solutions

Holomorphic data

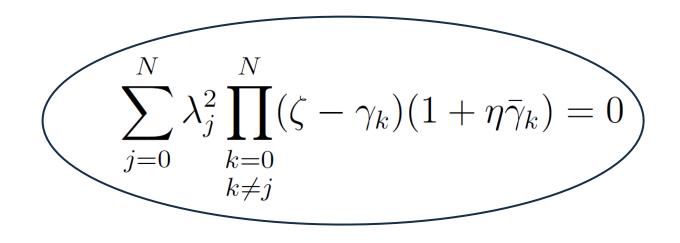
For example the one-monopole has spectral curve

$$2\eta\zeta(X_1 - iX_2) + \zeta(1 + R^2 - 2X_3) - \eta(1 + R^2 + 2X_3) - 2(X_1 + iX_2) = 0$$



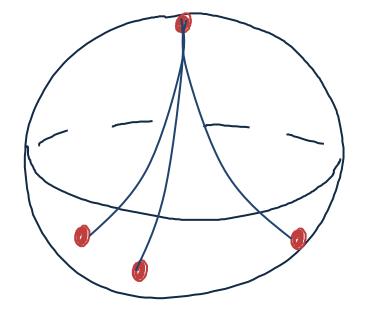
Spectral curve for generic JNR monopole

Using ADHM we can compute the explicit spectral curve for any JNR monopole:



Rational map

Analogue of the Donaldson rational map in flat space



Rational map

Analogue of the Donaldson rational map in flat space

There is a very simple expression for 't Hooft ansatz

 $\mathcal{R} = \sum_{j=1}^{N} \frac{\lambda_j^2}{z - \gamma_j}$

Tetrahedral monopole

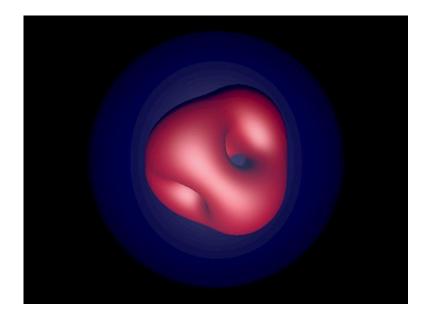
Poles are placed at the roots of the Klein polynomial

$$\mathcal{T}_v(\gamma) = \gamma^4 + 2i\sqrt{3}\gamma^2 + 1$$

with canonical weights
$$\lambda_j^2 = 1 + |\gamma_j|^2$$

Tetrahedral monopole

Energy density level:



Spectral curve:
$$(\eta - \zeta)^3 + \frac{i}{\sqrt{3}}(\eta + \zeta)(\eta\zeta + 1)(\eta\zeta - 1) = 0$$

Dihedral one-parameter families

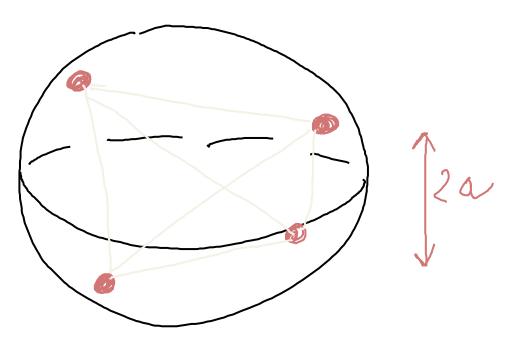
D2 three monopole
$$\gamma_0 = \sqrt{\frac{1+a}{1-a}}e^{i\pi/4}, \ \gamma_1 = -\gamma_0, \ \gamma_2 = 1/\gamma_0, \ \gamma_3 = -1/\gamma_0$$

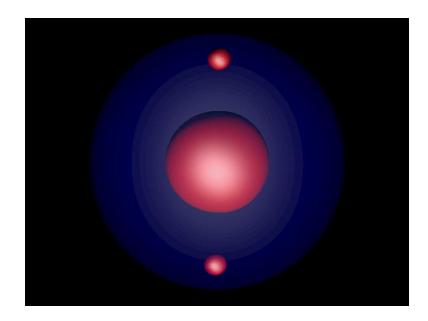
 $a \in (-1, 1)$ with canonical weights

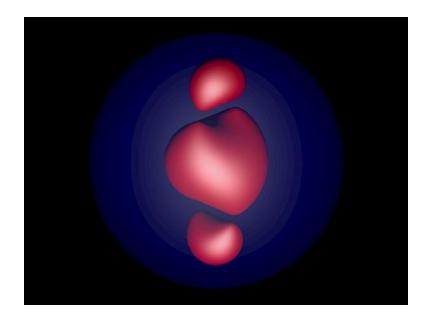
Dihedral one-parameter families

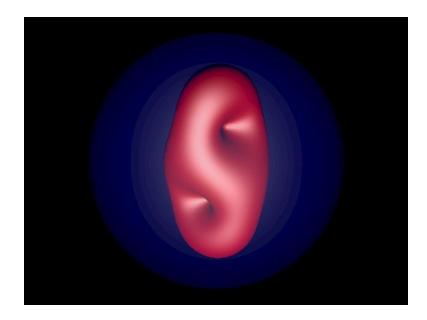
D2 three monopole
$$\gamma_0 = \sqrt{\frac{1+a}{1-a}}e^{i\pi/4}, \ \gamma_1 = -\gamma_0, \ \gamma_2 = 1/\gamma_0, \ \gamma_3 = -1/\gamma_0$$

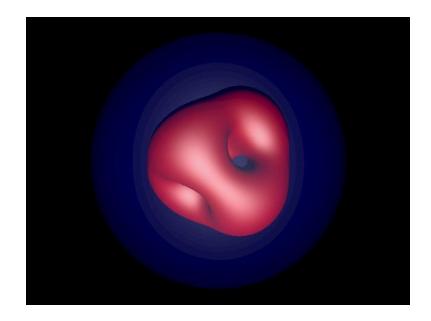
 $a \in (-1, 1)$ with canonical weights

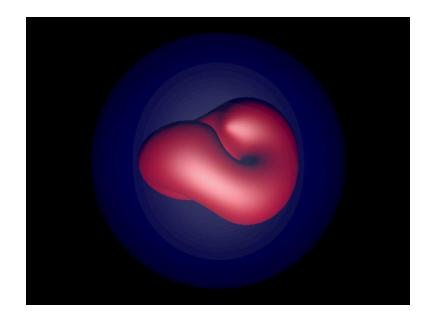


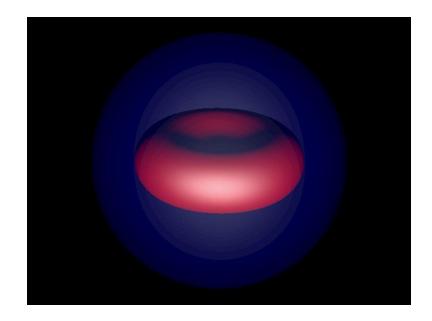


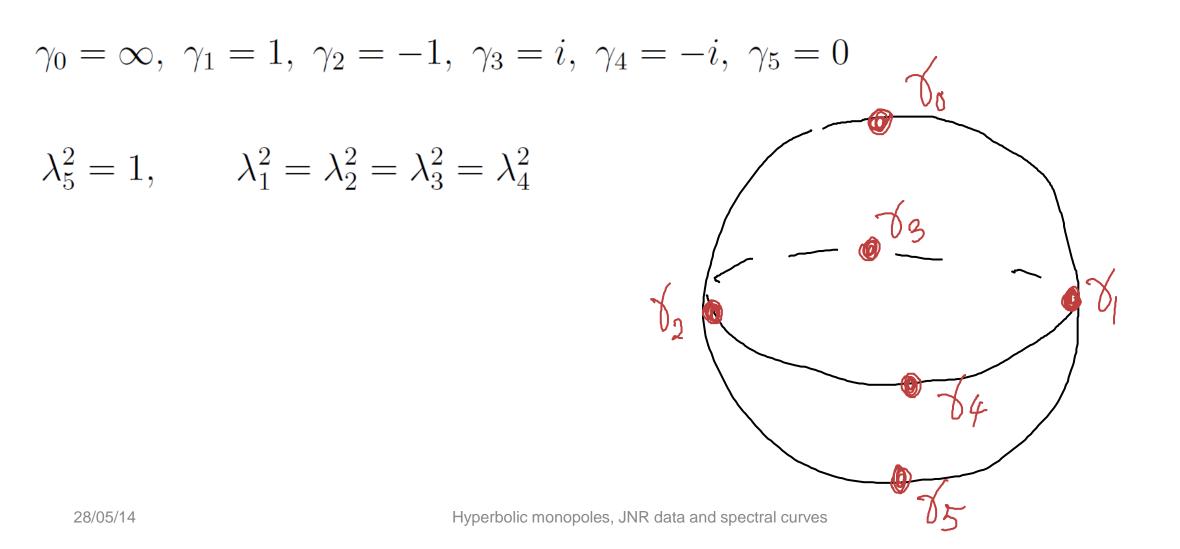


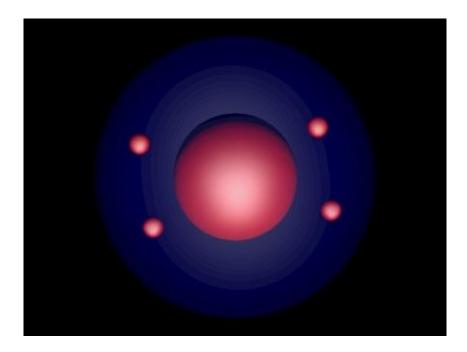


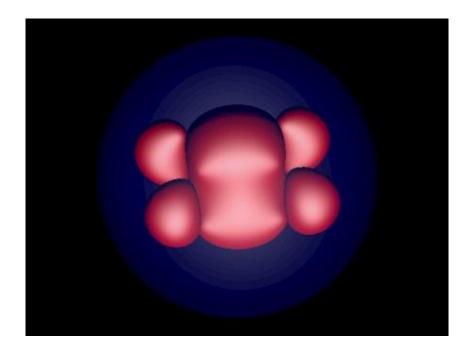


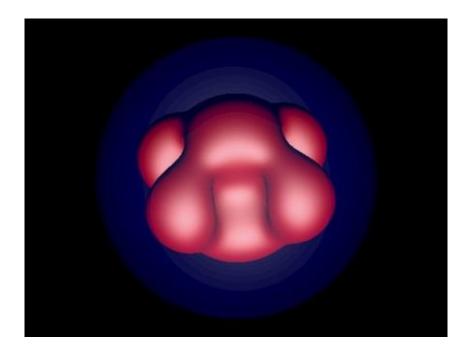




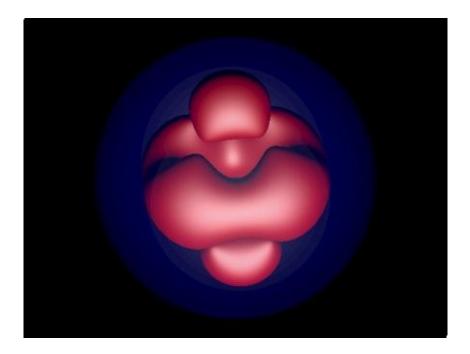


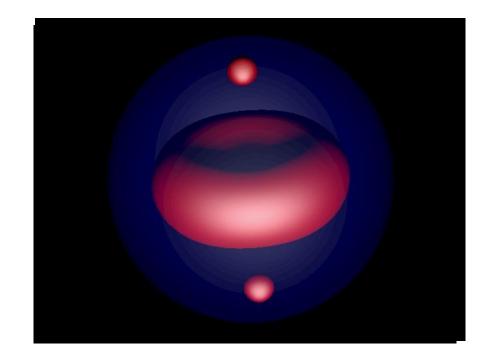


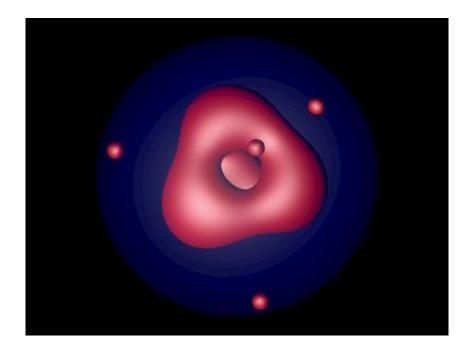


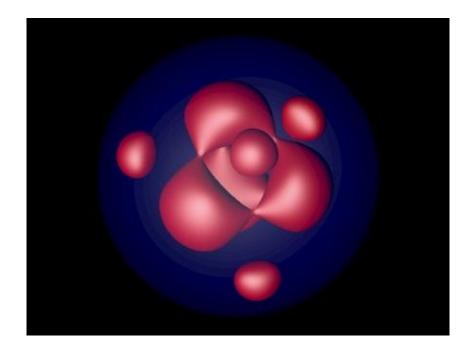


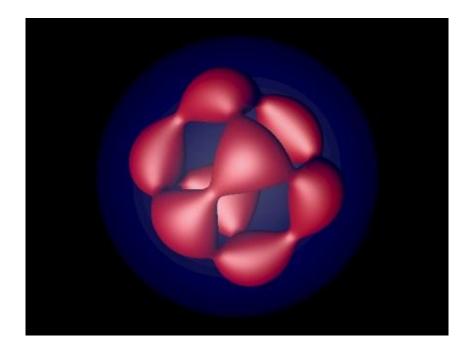


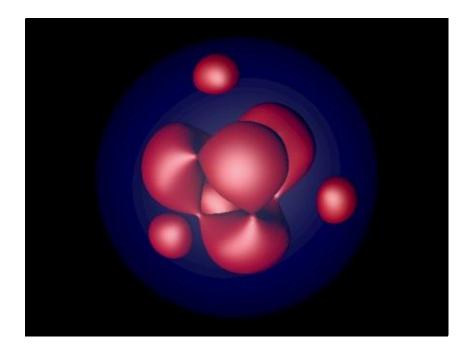


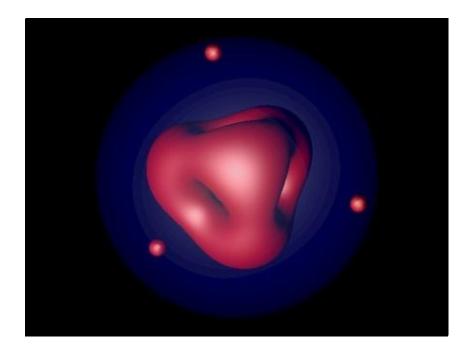


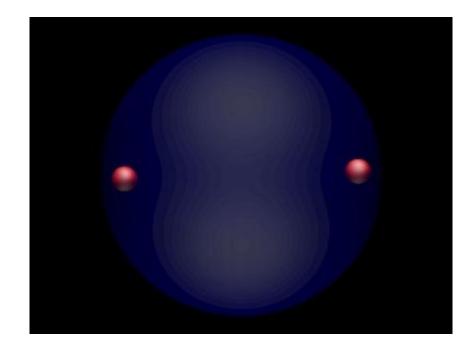


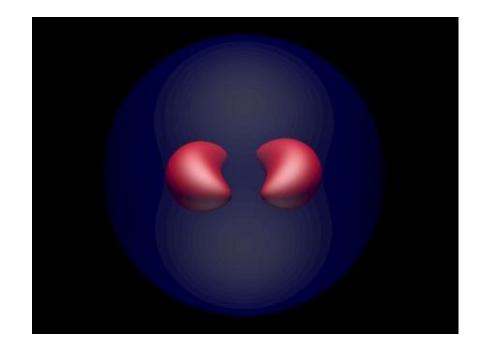


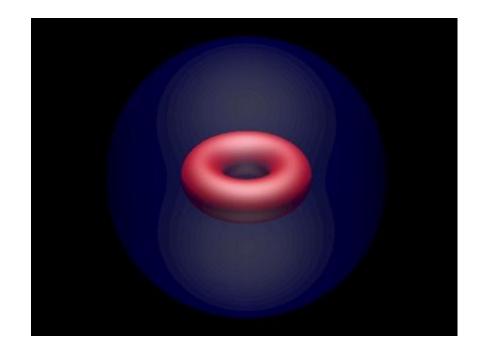


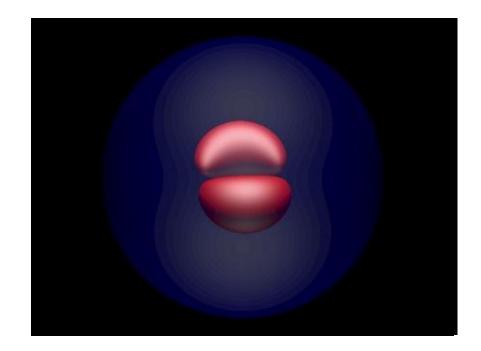


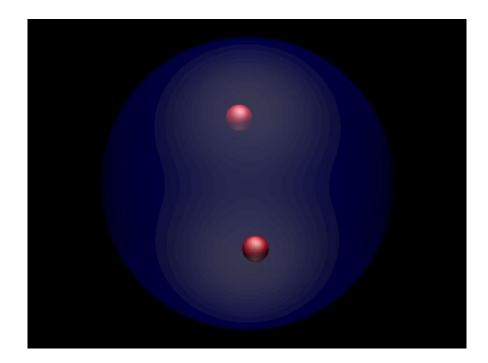


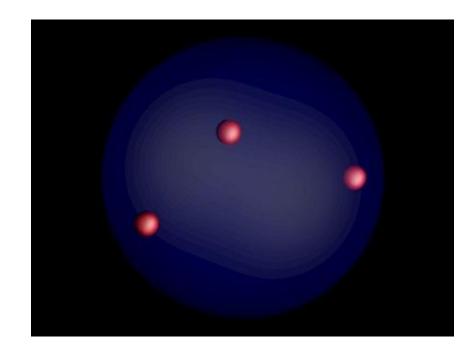


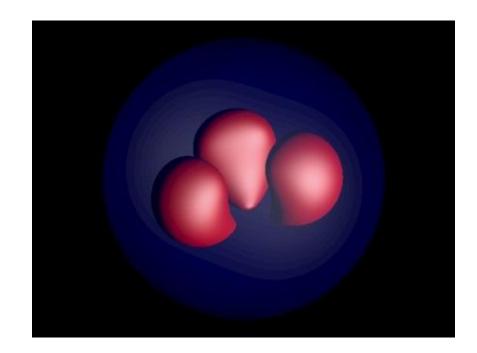


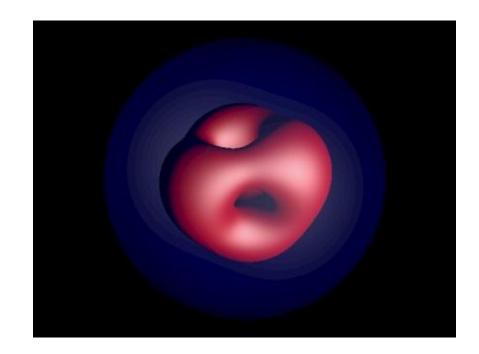


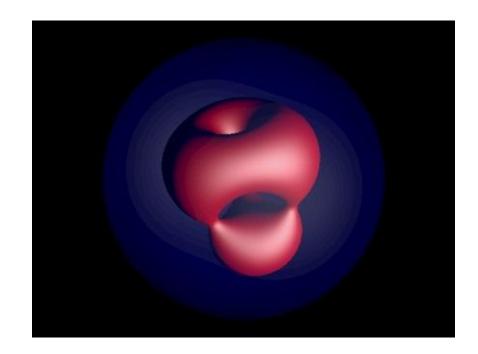


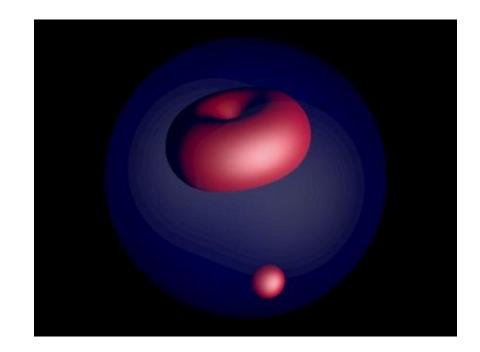












Boundary data

Gauge field at the boundary of the hyperbolic space $A_z = \frac{1}{2} \partial_z \log h$

Where $h(z, \overline{z})$ is a hermitian metric given by

$$h(z,\bar{z}) = \sum_{j=0}^{N} \lambda_j^2 \prod_{\substack{k=0\\k\neq j}}^{N} |z-\gamma_k|^2 = \psi|_{r=0} \prod_{\substack{k=0\\k\neq j}}^{N} |z-\gamma_k|^2$$

Boundary data

Gauge field at the boundary of the hyperbolic space $A_z = \frac{1}{2} \partial_z \log h$

Where $h(z, \overline{z})$ is a hermitian metric given by

$$h(z,\bar{z}) = \sum_{j=0}^{N} \lambda_j^2 \prod_{\substack{k=0\\k\neq j}}^{N} |z-\gamma_k|^2 = \psi|_{r=0} \prod_{\substack{k=0\\k\neq j}}^{N} |z-\gamma_k|^2$$

All the information is encoded in the boundary

Moduli space metric

The usual notion of metric diverges in hyperbolic space

Moduli space metric

The usual notion of metric diverges in hyperbolic space

We can define a regularized version, essentially the UV divergent part

Moduli space metric

The usual notion of metric diverges in hyperbolic space

We can define a regularized version, essentially the UV divergent part

We can compute this explicitly for any JNR.

For one monopole for example it reproduces the hyperbolic metric

$$t_1 + it_2 = \gamma_1 \qquad t_3 = \lambda_1.$$

$$g_{\mu\nu}dt_{\mu}dt_{\nu} = \frac{dt_1^2 + dt_2^2 + dt_3^2}{t_3^2}$$

Conclusion

• JNR ansatz can be used to construct a big family of explicit monopole solutions in hyperbolic space

Conclusion

- JNR ansatz can be used to construct a big family of explicit monopole solutions in hyperbolic space
- Holomorphic data, such as spectral curves and rational maps can be computed explicitly

Conclusion

- JNR ansatz can be used to construct a big family of explicit monopole solutions in hyperbolic space
- Holomorphic data, such as spectral curves and rational maps can be computed explicitly
- We showed many one-parameter families of dihedral and cyclic monopoles, analogue to scattering solutions in flat space