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Foreword

I This talk builds over a vast literature but is mainly based on these papers

• I.P., �Strings in an arbitrary constant magnetic �eld with arbitrary constant
metric and stringy form factors,� JHEP 1106 (2011) 138 [arXiv:1101.5898
[hep-th]].

• I.P., �Green functions and twist correlators for N branes at angles,� Nucl.
Phys. B 866 (2013) 87 [arXiv:1206.1431 [hep-th]].

• I.P, �Correlators of arbitrary untwisted operators and excited twist operators
for N branes at angles,� arXiv:1401.6797 [hep-th].

• I.P., �Canonical quantization of a string describing N branes at angle,� to
appear
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Plan of the talk

1 Introduction and motivation
The setup
Local expansion: string with N = 2 twists and excited twist �elds

2 The main result
Quick examples of the main result

3 Conclusions
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Introduction and motivation
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The big picture: why?

I We would like to do �phenomenology� from string in a humble way start from
the observed gauge group and matter:

I consider D-brane worlds −→ but GGUT ≤ SU(5)!
I add instantons in order to get some needed/wanted features (Majorana

masses, Yukawa couplings)

I Chiral matter appears in the twisted sector in the branes at angle setup.
Therefore Yukawa computation requires computing correlators with twisted
operators.

I Computations with twists appear also f.x.
I stringy instantonic calculus
I Melvin background and its T-dual versions
I type II and heterotic compacti�cations on orbifolds

Therefore it is worth having a complete control over the correlators involving all
kinds of twist �elds.
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My true personal motivation

Figure : I was bothered by not been able to deal with twist �elds as one does with spin
�elds
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The setup
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The setup
The Euclidean action for a string con�guration is given by

SE =
1

4πα′

∫
dτE

∫ π

0

dσ (∂αX
I )2 =

1

4πα′

∫
H

d2u (∂uX ∂̄ūX̄ + ∂̄ūX∂uX̄ )

Pictorially

D2 D1

D4

f4

f3

D3

f2

Σ

f1

D1D1 D4 D3 D2

τ1τ2τ3τ4

σ = π

σ = 0

X (σ, τ)

Figure : Map from the worldsheet to the target polygon Σ with a plain in and out string.
The map X (σ, τ) folds the σ = 0 starting from τ = −∞ in a counterclockwise direction.

Go to details on b.c.
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The setup: from interactions to boundary conditions
Pictorially

D1D1 D4 D3 D2

τ1τ2τ3τ4

σ = π

σ = 0
D1D1 D4 D3 D2

X (σ, τ)

I We are mapping interactions to boundary conditions.

I This is also what done in path integral approach.

I Surely it works for ground states which are �pointlike�.
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The setup: di�erent sectors
At given no. of branes there are di�erent inequivalent sectors
Labeled by M no. of convex angles minus 2.

a) b)

c) d)

Figure : The four di�erent cases with N = 6. a) M = 4 . b) M = 3. c) M = 2. d)
M = 1.

The intuitive reason: we need go through the straight line, i.e. no twist, if we
want to go from a re�ex angles to a more usual convex one.
One sector is more equal than the others: M = 1! It has holomorphic classical
solution.

Igor Pesando (DFT) Twists correlators Cortona, 27 May 2014 11 / 43



Local expansion: string with N = 2 twists and excited
twist �elds
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Zooming and usual twisted string
The local picture

ZOOM

D2 D1

D4

f4

f3

D3

f2

Σ

f1

D1D1 D4 D3 D2

τ1τ2τ3τ4

σ = π

σ = 0

X (σ, τ)

D1 D4

D4

D1

f4

α4

Figure : Zoom locally and get the usual twisted string.

ft is the interaction point in space.
αt is the angle of the brane with the space x axis.Igor Pesando (DFT) Twists correlators Cortona, 27 May 2014 13 / 43



Usual twisted string

After zooming the expansion for the twisted string between brane Dt and Dt+1

can be splitted into:

A classical part
Xcl = ft ,

A quantum part

Xq(u, ū; {xt , αt}) = +i
1

2

√
2α′e iπα1

∞∑
n=0

[
ᾱn+ε̄

n + ε̄
u−(n+ε̄) −

α†n+ε

n + ε
un+ε

]

+i
1

2

√
2α′e iπα1

∞∑
n=0

[
−
ᾱ†n+ε̄

n + ε̄
ūn+ε̄ +

αn+ε

n + ε
ū−(n+ε)

]

(ε = αt+1−αt + θ(αt −αt+1) the is the angle between the two branes; ε̄ = 1− ε)
The splitting into a classical and quantum part is needed for the existence of a
conserved product between modes. Go to details
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ᾱn+ε̄

n + ε̄
u−(n+ε̄) −

α†n+ε

n + ε
un+ε

]

+i
1

2

√
2α′e iπα1

∞∑
n=0

[
−
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ū−(n+ε)

]

(ε = αt+1−αt + θ(αt −αt+1) the is the angle between the two branes; ε̄ = 1− ε)
The splitting into a classical and quantum part is needed for the existence of a
conserved product between modes. Go to details

Igor Pesando (DFT) Twists correlators Cortona, 27 May 2014 14 / 43



Abstract excited twists and states in twisted Hilbert space
(1)

In twisted Hilbert space there are the non normalized! states

∞∏
n=0

(
n!α†n+ε

)Nn
(
n!ᾱ†n+ε̄

)N̄n

|T 〉

The vacuum |T 〉 corresponds to the abstract plain twist σε(x)

|T 〉 = lim
x→0

σε(x)|0〉SL(2)

All other states correspond the (generically non primary) abstract operators[ ∞∏
n=0

(
∂n+1
u X

)Nn
(
∂n+1
u X̄

)N̄n
σε,f

]
(x)

the excited twists.
Notice that f.x. all N̄n = 0 are primary.
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Abstract excited twists and states in twisted Hilbert space(2)

The notation [ ∞∏
n=0

(
∂n+1
u X

)Nn
(
∂n+1
u X̄

)N̄n
σε,f

]
(x)

is non standard but better than the usual one since it does not use a symbol for
each �eld

[∂uXσε,f ] (x)↔ τε(x),
[
∂uX̄σε,f

]
(x)↔ τ̄ε(x),[

(∂uX )2σε,f
]

(x)↔ ωε(x),
[
(∂uX̄ )2σε,f

]
(x)↔ ω̄ε(x),

However this notation can be partially misleading since it is not true that

∂2uX (u, ū) σε,f (x) ∼ 1

(u − x)#
(∂2uXσε,f )(x) + . . .

but

∂2uX (u, ū)σε,f (x) = (u−x)ε−2 (ε−1) (∂uXσε,f )(x)+(u−x)ε−1 ε (∂2uXσε,f )(x)+. . .
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The main result
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The main result in few words
For branes at angle on R2 (T 2) the generic correlator

I with L untwisted operators

I and N (excited) twist �elds

is given by a generalization of the Wick theorem.

Given:
I xt (t = 1, . . .N) positions on ws of twists
I ft intersections in space of two consecutive branes
I πεt angles between two consecutive branes

To compute any amplitude one needs

I classical solution X I
cl(u, ū; {xt , ft , εt})

I full Green function in presence of twist �elds G IJ(u, ū; v , v̄ ; {xt , εt})
(I , J = z , z̄)

I correlator of the plain twist �elds 〈
∏N

t=1 σεt ,ft (xt)〉
I a lot of patience
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cl(u, ū; {xt , ft , εt})

I full Green function in presence of twist �elds G IJ(u, ū; v , v̄ ; {xt , εt})
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Quick examples of the main result (1)
I On C = R2 with open string �elds X (u, ū) = X z(u, ū) ∈ C and

X̄ (u, ū) = X z̄(u, ū) = X ∗(u, ū) ∈ C with u = x + iy ∈ H (the upper half
plane)

I the following boundary correlator on a single brane (i.e. untwisted sector)

〈∂x X̄ (x1, x1) ∂xX (x2, x2) (∂2xX∂x X̄ )(x3, x3) 〉

I it is given by

=∂x1∂
2
x3
G z̄z
U,bou(x1, x3) ∂x2∂x3G

zz̄
U,bou(x2, x3)

+ ∂x1∂x3G
z̄ z̄
U,bou(x1, x3) ∂x2∂

2
x3
G zz
U,bou(x2, x3)

where G IJ
U,bou(x1, x2) is the boundary Green function for Untwisted boundary

conditions between two points x1, x2 ∈ R on the boundary of the upper plane
boundary (G zz 6= 0 since brane breaks rotations)

I other possible terms like

∂x1∂x2G
z̄z
U,bou(x1, x2) ∂2x3∂x3 [G zz̄

U,bou(x2, x3)]regularized

are absent because of normal ordering
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Quick examples of the main result (2)
I Twisted case: the boundary correlator on N branes at angles

〈∂x X̄ (x1, x1) ∂xX (x2, x2) (∂2xX∂x X̄ )(x3, x3)
N∏
t=1

σεt (xt)〉
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z̄ z̄
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2
x3
G zz
bou(x2, x3) as before

+ ∂x1∂x2G
z̄z
bou(x1, x2) ∂2x3∂y3 |y3=x3∆zz̄

bou(x3, y3) left over from norm. ord.

+ ∂x1∂
2
x2
G z̄z
bou(x1, x2) ∂2x3Xcl(x2) ∂x3 X̄cl(x3) + ∂x1 X̄cl(x1) ∂x2Xcl(x2) ∂2x3∂y3 |y3=x3∆zz̄

bou(x3, y3)

+ ∂x1∂
2
x3
G z̄z
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+ ∂x X̄cl(x1, x1) ∂xXcl(x2, x2) ∂2xXcl(x3, x3) ∂x X̄cl(x3, x3)
}
from classical solution Xcl

where G IJ
bou(x , y) is the boundary Green function for twisted b.c.

and ∆IJ
bou(x , y) its regularized version.

A NUMBER OF DETAILS HAVE BEEN OMITTED!
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Quick examples of the main result (3)
I Twisted case: the boundary correlator and excited twists on N branes at

angles

〈∂x X̄ (x̂1, x̂1) (∂xXσε1)(x1, x1) (∂2xX∂x X̄σε2)(x2, x2)
N∏
t=3

σεt (xt)〉

where (∂2xX∂x X̄σε2) is the excited twist de�ned very roughly as
limu→x2(∂2xX∂x X̄ )(u, ū)σε2(x2)

= 〈
N∏
t=1

σεt (xt)〉
{
∂v2 [(v2 − x2)ε̄2∂x̂1∂v2G

z̄z(x̂1, x̂1; v2, v̄2)]
∣∣∣
v2=x2

× [(v1 − x1)ε̄1(v2 − x2)ε2∂v1∂v2G
zz̄(v1, v̄1; v2, v̄2)]|vt=xt

+[(v2 − x2)ε2∂x̂1∂v2G
z̄ z̄(x̂1, x̂1; v2, v̄2)]|v2=x2

× ∂v2 [(v1 − x1)ε̄1(v2 − x2)ε̄2∂v1∂v2G
zz(v1, v̄1; v2, v̄2)]|vt=xt �as before�

+ [(v1 − x1)ε̄1∂x̂1∂v1G
z̄z(x̂1, x̂1; v1, v̄1)]|v1=x1

× ∂v2 [(u2 − x2)ε̄2(v2 − x2)ε2∂u2∂v2∆zz̄(u2, ū2; v2, v̄2)]|u2=v2=x2 left over from norm. ord.

+ terms with classical contributions
}
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The Reggeon vertex (1)
Is it possible to generate the previous correlators in a �mechanical� way?

YES
For example the untwisted correlator

〈∂x X̄ (x1, x1) ∂xX (x2, x2) (∂2xX∂x X̄ )(x3, x3) 〉

=
∂

∂c(1)1

∂

∂c̄(2)1

∂2

∂c̄(3)2∂c(3)1
V ({c(i)n, c̄(i)n})

∣∣∣
c=0

where

I V ({c(i)n, c̄(i)n}) is the Reggeon vertex
I c(i)n with i associated with xi
I c(i)n with n associated with the numeber of derivatives ∂nxi

Easy to derive for the untwisted correaltors.
More complicated with the twisted ones
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I c(i)n with i associated with xi
I c(i)n with n associated with the numeber of derivatives ∂nxi

Easy to derive for the untwisted correaltors.
More complicated with the twisted ones
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The untwisted Reggeon vertex (2)
I Map untwisted abstract operator to a realization in an untwisted Hilbert

space.
E.g. in untwisted Hilbert space

(∂2xX∂x X̄ )(x3, x3) =
∂2

∂c̄(3)2∂c(3)1
S(c(3), c̄(3))

+ S(c(3), c̄(3)) = : e
∑∞

n=0[c̄(3)n∂
n
xXop(x3,x3)c(3)n∂

n
x X̄op(x3,x3)] : = : e

∑∞
n=0 c(3)nI∂

n
x X̄

I
op(x3,x3) :

The Sciuto-Della Selva-Saito vertex S is the generating function of this map.

I Compute the generating function of all correlators with L untwisted vertices
in untwisted Hilbert space

VL({c(i)n, c̄(i)n}) = 〈0|S(c(1), c̄(1)) . . .S(c(L), c̄(L))|0〉

I

=
∏

1≤i<j≤L

e
∑∞

n,m=0 c(i )nI c(j)mJ ∂
n
xi
∂mxj

G IJ
U (xi ,xj )

with c(i)n = c(i)nz̄ = cz(i)n and c̄(i)n = c(i)nz = c z̄(i)n.
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The Reggeon vertex (3)
The idea is to generalize the untwisted computation

VL({c(i)n, c(i)n}) = 〈0|S(c(1), c̄(1)) . . .S(c(L), c̄(L))|0〉

to the twisted case

VN+L({c(i)n, d(t)n}) =〈0out |ST (1)(c(1), c̄(1)) . . .ST (L)(c(L), c̄(L))×
× T(1)(d(1), d̄(1)) . . . T(N)(d(N), d̄(N))|0in〉

We need understanding

I the in vacuum |0in〉
I the out vacuum 〈0out | Details

I the Sciuto-Della Selva-Saito ST (c(i), c̄(i)) for the untwisted matter in the
twisted sectors Details

I the Sciuto-Della Selva-Saito T (d(t), d̄(t)) for the twisted matter, i.e. excited
twist �eld Details

Details on computation

I It is also possible and more normal to perform the previous computation in
path integral formalism Sketch of computation
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The Reggeon vertex (4)
The �nal result for L untwisted vertices and N twisted ones.

I Associate: space index ↔ I with I = z , z̄
untwisted ↔ c(i)nI with i = 1, . . . L,
twisted ↔ d(t)nI with t = 1, . . .N

I The generating function is
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I Associate: space index ↔ I with I = z , z̄
untwisted ↔ c(i)nI with i = 1, . . . L,
twisted ↔ d(t)nI with t = 1, . . .N

I The generating function is

VN+L(c, d) = lim
{ut}→{xt}

〈σε1,f1(x1) . . . σεN ,fN (xN)〉 × Vclass × Vself int × Vint

with

Vclass =
N∏
t=1

e
∑∞

n=1 d(t)nI∂
n−1
ut

[(ut−xt)εtI ∂uX
I
cl

(ut ,ūt)]

×
L∏
i=1

e
∑∞

n=0 c(i )nI∂
n
xi
X I
cl

(xi ,xi )

where X I
cl(u, ū) is the classical solution.
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I Associate: space index ↔ I with I = z , z̄
untwisted ↔ c(i)nI with i = 1, . . . L,
twisted ↔ d(t)nI with t = 1, . . .N

I The generating function is

VN+L(c, d) = lim
{ut}→{xt}

〈σε1,f1(x1) . . . σεN ,fN (xN)〉 × Vclas × Vself int × Vint

with
Vself interaction =

N∏
t=1

e
1
2

∑∞
n,m=1 d(t)nId(t)mJ∂

n−1
ut

∂m−1vt
[(ut−xt)εtI (vt−xt)εtJ ∂u∂v∆IJ

(t)(ut ,ūt ;vt ,v̄t ;{xt̄ ,εt̄})]|vt=ut

×
L∏
i=1

e
1
2

∑∞
n=0 c(i )nI

∑∞
m=0 c(i )mJ∂

n
xi
∂mx̂i

∆IJ
(i )(xi ,xi ;x̂i ,x̂i ;{xt ,εt})|x̂i =xi

where ∆IJ
(t) is the Green function regularized at point xt
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twisted ↔ d(t)nI with t = 1, . . .N

I The generating function is

VN+L(c, d) = lim
{ut}→{xt}

〈σε1,f1(x1) . . . σεN ,fN (xN)〉 × Vclassical × Vself interaction × Vinteractions

with

Vinteractions =∏
1≤t<t̂≤N

e
∑∞

n,m=1 d(t)nId(t̂)mJ∂
n−1
ut

∂m−1vt̂
[(ut−xt)εtI (vt̂−xt̂)εt̂J ∂u∂vG

IJ(ut ,ūt ;vt̂ ,v̄t̂ ;{xt̄ ,εt̄})]

×
∏

1≤i<j≤L

e
∑∞

n=0 c(i )nI

∑∞
m=0 c(j)mJ∂

n
xi
∂mxj

G IJ(xi ,xi ;xj ,xj ;{xt ,εt})

×
∏

1≤t≤N

∏
1≤j≤L

e
∑∞

n=1 d(t)nI c(j)mJ∂
n−1
ut

∂mxj
[(ut−xt)εtI ∂uG

IJ(ut ,ūt ;xj ,xj ;{xt̄ ,εt̄})]
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The Reggeon vertex (4)
Our case L untwisted vertices and N twisted ones.
Putting all together the generating function is

VN+L(c , d) = lim
{ut}→{xt}

〈σε1,f1(x1) . . . σεN ,fN (xN)〉

×
N∏
t=1

{
e
∑∞

n=1 d(t)nI∂
n−1
ut

[(ut−xt)εtI ∂uX
I
cl

(ut ,ūt)]

×e
1
2

∑∞
n,m=1 d(t)nId(t)mJ∂

n−1
ut

∂m−1vt
[(ut−xt)εtI (vt−xt)εtJ ∂u∂v∆IJ

(N,M)(t)(ut ,ūt ;vt ,v̄t ;{xt̄ ,εt̄})]|vt=ut

}

×
L∏
i=1

{
e
∑∞

n=0 c(i )nI∂
n
xi
X I
cl

(xi ,xi )

×e
1
2

∑∞
n=0 c(i )nI

∑∞
m=0 c(i )mJ∂

n
xi
∂mx̂i

∆IJ
(N,M),bou(i )

(xi ,x̂i ;{xt ,εt})|x̂i =xi

}
×

∏
1≤t<t̂≤N

e
∑∞

n,m=1 d(t)nId(t̂)mJ∂
n−1
ut

∂m−1vt̂
[(ut−xt)εtI (vt̂−xt̂)εt̂J ∂u∂vG

IJ
(N,M)(ut ,ūt ;vt̂ ,v̄t̂ ;{xt̄ ,εt̄})]

×
∏

1≤i<j≤L

e
∑∞

n=0 c(i )nI

∑∞
m=0 c(j)mJ∂

n
xi
∂mxj

G IJ
(N,M),bou

(xi ,xj ;{xt ,εt})

×
∏

1≤t≤N

∏
1≤j≤L

e
∑∞

n=1 d(t)nI c(j)mJ∂
n−1
ut

∂mxj
[(ut−xt)εtI ∂uG

IJ
(N,M)(ut ,ūt ;xj ,xj ;{xt̄ ,εt̄})]
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Conclusions
We have shown that to compute any correlator involving excited twisted �elds and
untwisted vertices are needed three ingredients

I classical solution X I
cl(u, ū; {xt , αt , ft})

I correlator of the plain twist �elds 〈
∏N

t=1 σεt ,ft (xt)〉
I full Green function in presence of twist �elds G IJ(u, ū; v , v̄ ; {xt , αt})

(I , J = z , z̄)

and that the computation is more or less similar to the computation done using
Wick theorem.
In this way they are not worse that correlators with spin �elds
BUT
to get the amplitudes is almost impossible since the Green function is a product of
generalization of hypergeometric functions.
Branes at angles Green function in NOT the same Green function for magnetized
branes!
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Details
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The setup: boundary conditions
We put the following boundary conditions

e−iπαt∂yX
z(u, ū)|u=x+i0+ + e iπαt∂yX

z̄(u, ū)|u=x+i0+ = 0 xt < x < xt−1

e−iπαtX z(u, ū)|u=x+i0+ − e iπαtX z̄(u, ū)|u=x+i0+ = 2igt xt < x < xt−1

They mean

I brane Dt is on the segment xt < x < xt−1

I brane Dt has Dirichlet boundary condition in the orthogonal direction 2t
√
2iX 2t = e−iπαtX z − e iπαtX z̄ = 2igt (1)

hence
√
2gt ∈ R is the distance of the brane from the origin

I brane Dt has Neumann boundary condition in the parallel direction 1t
√
2X 1t = e−iπαtX z + e iπαtX z̄ (2)

Back to Setup
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The Hermitian product for modes (1)

I Have a time dependent world-sheet since the boundary conditions vary with
time.

I Need a proper way of de�ning an Hermitian product conserved in time.

I The solution: the Klein-Gordon metric used in QFT on curved spacetime.
Note: not positive de�nite but is constant in time when solutions of KG
equation are considered.

I Start from K-G current for any two 2-vectors F1,2 = (f z1,2, f
z̄
1,2)

jα(F1,F2) = i [(f I1 )∗∂αf
I
2 − (∂αf

I
1 )∗f I2 ]

I It is conserved on solutions.

Back to Twisted string
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Note: not positive de�nite but is constant in time when solutions of KG
equation are considered.

I Start from K-G current for any two 2-vectors F1,2 = (f z1,2, f
z̄
1,2)

jα(F1,F2) = i [(f I1 )∗∂αf
I
2 − (∂αf

I
1 )∗f I2 ]

I It is conserved on solutions.
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The Hermitian product for modes (2)
I Consider on half an annulus S(r0, r1) in the upper half plane

0 =

∫
S(r0,r1)

d ∗ j =

∫
|u|=r1

∗j −
∫
|u|=r0

∗j +

∫
[r0,r1]

∗j +

∫
[−r1,−r0]

∗j

I �Metric� is at given time r = |u|, e.g.
∫
|u|=r0

∗j
Term like

∫
[r0,r1]

∗j is not computed at constant time.

I We can write
∫

[r0,r1]
∗j = G (r1)− G (r0).

Try to de�ne a Hermitian product

(F1,F2) = (F2,F1)∗ =

∫
|u|=r

∗j + G (r)− G (−r)

I Good? Only if G (r)− G (−r) does not depend on past bck values.
This requires F to have quantum boundary conditions

e−iπαt∂y f
z(u, ū)|u=x+i0+ + e iπαt∂y f

z̄(u, ū)|u=x+i0+ = 0 xt < x < xt−1

e−iπαt f z(u, ū)|u=x+i0+ − e iπαt f z̄(u, ū)|u=x+i0+ = 0 xt < x < xt−1

Same for having a self-adjoint ∂u∂̄ū!

Back

Igor Pesando (DFT) Twists correlators Cortona, 27 May 2014 31 / 43



The Hermitian product for modes (2)
I Consider on half an annulus S(r0, r1) in the upper half plane

0 =

∫
S(r0,r1)

d ∗ j =

∫
|u|=r1

∗j −
∫
|u|=r0

∗j +

∫
[r0,r1]

∗j +

∫
[−r1,−r0]

∗j

I �Metric� is at given time r = |u|, e.g.
∫
|u|=r0

∗j
Term like

∫
[r0,r1]

∗j is not computed at constant time.

I We can write
∫

[r0,r1]
∗j = G (r1)− G (r0).

Try to de�ne a Hermitian product

(F1,F2) = (F2,F1)∗ =

∫
|u|=r

∗j + G (r)− G (−r)

I Good? Only if G (r)− G (−r) does not depend on past bck values.
This requires F to have quantum boundary conditions

e−iπαt∂y f
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e−iπαt f z(u, ū)|u=x+i0+ − e iπαt f z̄(u, ū)|u=x+i0+ = 0 xt < x < xt−1

Same for having a self-adjoint ∂u∂̄ū!
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The Hermitian product for modes (3)

I Quantum boundary condition implies split

X I (u, ū) = X I
cl(u, ū; {xt , gt , αt}) + X I

q(u, ū; {xt , εt})

with Xcl classical solution, Xq quantum �uctuation to be quantized

I The Hermitian form is then for quantum �uctuations

(F1,F2) = (F2,F1)∗ =

∫
|u|=r

∗j

I For the usual magnetic branes get the well known �weird� Hermitian form

(F1,F2) =

∫ π

0

i F
†
1

↔
∂τ F2dσ + iF

†
1F0F2|σ=0 − iF

†
1FπF2|σ=π

where FIJs are the magnetic �elds.
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X I (u, ū) = X I
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Re�ned overlap condition

In principle it is possible to study the quantum modes of the ∂u∂̄ū with quantum
boundary conditions.

I BUT there are still some issues

I HENCE use the old overlap approach but improved

I split
X (u, ū) = Xcl (u, ū; {xt , ft , αt}) + Xq(u, ū; {xt , αt})

I compute the global classical solution Xcl (u, ū; {xt , ft , αt})
I when xt < |u| < xt−1 the string endpoints are f.x. on DN and Dt use the

appropriate quantum expansion as there were the appropriate twist at u = 0
and the corresponding antitwist at u =∞

Xq(u, ū; {DN ,Dt})

I at transition �time� like |u| = xt require match of the two quantum expansions
as

Xq(u, ū; {DN ,Dt+1})||u|=x−t = Xq(u, ū; {DN ,Dt})||u|=x+
t

Back to twisted string Back to reggeon
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I compute the global classical solution Xcl (u, ū; {xt , ft , αt})
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Xq(u, ū; {DN ,Dt})

I at transition �time� like |u| = xt require match of the two quantum expansions
as
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boundary conditions.

I BUT there are still some issues

I HENCE use the old overlap approach but improved
I split
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Xq(u, ū; {DN ,Dt})

I at transition �time� like |u| = xt require match of the two quantum expansions
as
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In and out vacua in presence of N twist �elds (1)

We consider the con�guration

D1D2

f1

D2 D1

DN

fN

fN−1

DN−1 Σ
D1DN DN−1 D2

x1x2xN−1

X (u, ū)

DN−1

x1x2

DN

We use the improved overlap
Hence we take the in vacuum to be the twisted vacuum corresponding to the
usual N = 2 twisted string

|0in〉 = |TDN−1DN 〉
Back to Reggeon
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In and out vacua in presence of N twist �elds (2)

What about 〈0out |?

I Compute Green function

G IJ(u, ū; v , v̄ ; {xt , εt})

in the usual way

I consider the operatorial de�nition of the (derivative of) Green function

∂u∂vG
IJ(u, ū; v , v̄ ; {xt , εt}) =

〈0out |∂uX I
q(u, ū)∂vX

J
q (v , v̄)|0in〉

〈0out |0in〉

I take |u|, |v | < xN−1 so we can write

∂u∂vG
IJ =

〈0out |∂uX I
{DN−1,DN},q(u, ū)∂vX

J
{DN−1,DN},q(v , v̄)|TDN−1DN 〉

〈0out |TDN−1DN 〉

Back to Reggeon
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J
{DN−1,DN},q(v , v̄)|TDN−1DN 〉

〈0out |TDN−1DN 〉

Back to Reggeon

Igor Pesando (DFT) Twists correlators Cortona, 27 May 2014 35 / 43



In and out vacua in presence of N twist �elds (2)

What about 〈0out |?
I Compute Green function
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In and out vacua in presence of N twist �elds (3)

What about 〈0out |?

I Use mode expansion and normal order the result

∂u∂v∆IJ
(N,M)(N−1) =

〈0out | : ∂uX
I (−)
{DN−1,DN},q(u)∂vX

J(−)
{DN−1,DN},q(v) : |TDN−1DN 〉

〈0out |TDN−1DN 〉

with

∆IJ
(N,M)(N−1)(u, ū; v , v̄ ; {xt , εt}) =G IJ(u, ū; v , v̄ ; {xt , εt})

− G IJ
N=2,{DN−1,DN}(u, ū; v , v̄)

the regularized Green function.

I derive
〈0out | ∼ 〈TD1DN |eBz̄ z̄αα+Bzz ᾱᾱ+Bz̄zαᾱ

with B ∼ ∆IJ

Back to Reggeon
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SDS vertex for untwisted vertices (1)

The SDS vertex maps an abstract operator to an operatorial realization.
The map for an untwisted abstract operator to its operatorial realization in
twisted Hilbert space is

ST (c, c̄) = : e
∑∞

n=0[c̄n∂
n
xXop T (x+i0+,x−i0+)+cn∂

n
x X̄op T (x+i0+,x−i0+)] :

exp

{
1

2

∞∑
n,m=0

c̄nI cmJ ∂
n
x1
∂mx2∆IJ

bou T (x1; x2)|x1=x2=x

}

There is a new piece

∆IJ
bou T (x1; x2) =G IJ

N=2T (x1 + i0+, x1 − i0+; x2 + i0+, x2 − i0+)

− G IJ
U (x1 + i0+, x1 − i0+; x2 + i0+, x2 − i0+)

the left over of the �minimal subtraction�. Back to Reggeon slide
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SDS vertex for untwisted vertices (2)

Why is so?

I Consider �simplest� untwisted vertex in untwisted Hilbert space

: e ik
IX I

op Untwisted
(x) :

I can be derived from non normal ordered vertex by a point splitting procedure

: e ik
IX I

op Untwisted
(x) := lim

η→0
N (η)e

ikI [X
I (−)

op Untwisted
(xe−η)+X

I (+)

op Untwisted
(x)]

with N (η) a regularization factor

I the vertex for the same state in twisted Hilbert space can ne derived as

lim
η→0
N (η)e

ikI [X
I (−)

op Twisted
(xe−η)+X

I (+)

op Twisted
(x)]

with the same regularization factor N (η), a kind of minimal subtraction.

I OK since realizations in twisted Hilbert reproduce the usual OPEs!

Back to Reggeon slide
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SDS vertex for untwisted vertices (3)

Two examples

I to the boundary tachyonic vertex e i k̄X (x,x)+ikX̄ (x,x) corresponds the
operatorial realization

x−α
′k2‖D e−

1
2R

2(ε)α′k2‖D : e i(k̄X (x,x)+kX̄ (x,x)) :

with R2(ε) = 2ψ(1)− ψ(ε)− ψ(ε̄) > 0 and ψ(z) = d ln Γ(z)
dz

the digamma
function and k‖D is the part of the momentum, parallel to the brane

I we can also compute the SDS for chiral operators: to the chiral operator
(∂2uX ∂uX ∂uX̄ )(u) corresponds

: (∂2uX∂uX∂uX̄ )(u) : +∂2u∂v∆zz̄
c |v=u∂uX + ∂u∂v∆zz̄

c |v=u∂
2
uX

=: (∂2uX∂uX∂uX̄ )(u) : −kεkε̄ε(1− ε)(2− ε)
2u3

∂uX +
kεkε̄ε(1− ε)

2u2
∂2uX

with kε = −i 1
2

√
2α′e iπαt and kε̄ = −i 1

2

√
2α′e−iπαt
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SDS for excited twists (1)
I The main observation

∂n−1u

[
uε̄∂uXop(u, ū)

]
= (n − 1)! kεα

†
n−1+ε + O(u)

I therefore a normal ordered products of these operators gives directly an
excited twist state, e.g.

lim
u→0

: ∂n−1u

[
uε̄∂uXop(u, ū)

]
∂m−1u

[
uε∂uX̄op(u, ū)

]
: |T 〉

= kεkε̄(n − 1)!(m − 1)!α†n−1+εᾱ
†
m−1+ε|T 〉 =

(
∂nX∂mX̄σε,f

)
(0)|0〉SL(2)

I then the SDS vertex is

TT (d , d̄) =

lim
u→0

: exp

{ ∞∑
n=1

[
d̄n∂

n−1
u

[
uε̄∂uXop T (u, ū)

]
+ dn∂

n−1
u

[
uε∂uX̄op T (u, ū)

]]}
:

since[ ∞∏
n=1

(∂nuX )Nn
(
∂nu X̄

)N̄n
σε,f

]
(0)|0〉SL(2) ↔ lim

u→0

∞∏
n=1

∂Nn

∂d̄Nn
n

∂N̄n

∂d N̄n
n

T (d , d̄)

∣∣∣∣∣
d=0

|T 〉
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SDS for excited twists (2)
What if the twist �eld is not located at x = 0?

Translate the previous operator

T (d , d̄) =

lim
u→x

: exp

{ ∞∑
n=1

[
d̄n∂

n−1
u

[
(u − x)ε̄∂uXop(u, ū)

]
+ dn∂

n−1
u

[
(u − x)ε∂uX̄op(u, ū)

]]}
:

This is what needed for exciting the other twist �elds hidden in the boundary
conditions discontinuities.

Back to Reggeon slide
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Reggeon vertex for N excited twist �elds and L untwisted
states

We have now all ingredients to compute

VN+L({c(i)n, d(t)n}) =〈0out |ST (1)(c(1), c̄(1)) . . .ST (L)(c(L), c̄(L))×
× T(1)(d(1), d̄(1)) . . . T(N)(d(N), d̄(N))|0in〉

and get the stated result.

Notice that for the interactions not in the in Hilbert state we need to use the
overlap condition to analytically continue them into the in Hilbert state.
In particular the relations are fundamental

[S(c(i), c̄(i))|Hilbert(DtDN)]analytically cont. ∼ec
I cJ [GU(DN−1)−GU(Dt )]

S(c(i), c̄(i))|Hilbert(DN−1DN)

and

[T (d(t), d̄(t))|Hilbert(DtDN)]analytically cont. ∼ed
IdJ [GN=2,(DN−1DN )−GN=2,(DtDN )]

T (d(t), d̄(t))|Hilbert(DN−1DN)

Back to Reggeon slide
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The path integral approach
The path integral amounts to computing

VN+L({c(i), d(t)}) =

∫
M({xt ,εt ,ft})

DX e−SE
L∏
i=1

Sabs(c(i), c̄(i))
N∏
t=1

Tabs(d(t), d̄(t))

where

I M({xt , εt , ft}) is the space of string con�gurations satisfying the desired
boundary conditions

I Sabs(c(i), c̄(i)) is the abstract operator version of the SDS vertex

I Tabs(d(t), d̄(t)) is the abstract operator version of the SDS vertex

Since the integral is quadratic can be easily done. Back to Reggeon slide
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