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» Self-interaction not included in Lorentz force ddLs = eF*y,

It does not conserve the energy!

» F(x) and j*(x) = e [ u"d*(x — y(s))ds are distributions but
the energy-momentum tensor of the EM field

1
Tl = FUOFY + 2 FPFop

is not: Tem~L1—4 , not integrable for L ~ 0.
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Conservation of T + T;Lal;tl.de — Lorentz-Dirac force with

radiation reaction (and some other minor issue)
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With Maxwell's equations we obtain a consistent theory (at the
classical level) in agreement with i — 0 limit of QED!

Can we do the same for massless charges? (and learn some lesson?)
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and field with italic letters F*V...

For massless particles lower case letters for
yH(A), u*(X), wH(X), j# and calligraphic font for the fields F*¥...
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Lienard-Wichert fields

Define retarded time A\,(x) and

L= xt — YH(A\(x)) ,L2=0 L°>0

light—like causal

Coulomb field
i(U“LV — UYLH) U?

4m (UL)?

cH =

Radiation field

e LP(unwy — (WL uv)
R = hE — (e v)

Naively set V =1. On
A\, b) = y"(A\)+ bu”(N), b>0

=Tty vt = ul x> =0 = CH , RM | — 400

Notice: T has a border: 9 >0 =— b > 0.



String of singularity

Corresponding string at time ¢ (using t as parameter)

—

7(6) = (¢~ ) + b (1~ b)
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Green function method fails

The method (V =1):

OuF™ =¥, 0aFpy =0, = OA"=j', 94" =0

O6(x) = 8*(x) — G(x) = %H(XO)a(%) A= Gt

?
GeS butjt¢S — A c S
For rectilinear uniform motion at V = 1 one gets

m
AL = 22 Hux) ¢ S

A1 ux
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Rectilinear uniform motion
Al € 8’ given by Jg,;, but %i_r}riA’;\,U ¢S
Absorb divergences with gauge transformations:

uy o 1] 1 _ v M _ . v
and it solves the Maxwell equation for ji,

0, F% =9, LimFE, = Limd,FL" = LimJ%,, = j&
mY RU uV—)l RU Vol rRU Vol RU JRU



The shockwave

Resulting field: the shockwave (v* = %)

ByV Y xH
}_W_C#,,_evx v¥x
RU — YRU —

d(vx)

2 X2
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The four potential

Green function method provides

AP = e u”
47 ul

Apply to test function ¢ and use integration coordinates
> centered on the particle — X > X+ ¥

» shift time so that t is the retarded time =— t > t+r

(r=1x1)

I
A) = o [ ol r 34 () dx

Not integrable in region t ~ —r — —oo and X ~ —y(t) — oc.
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Bounded motion

t——oo

y(t) T 00 = At e S = FM given by derivatives
computed in &’
Easier to use a regularisation!

Y’

V') ==~ Y(N)=7(\) = LimJ“=j*

C* =LimC* =0
V-1

1
RM = LimR" = P(R") + Z QM
V-1 2

+o00
QW = e/ b(u*w” — u”wh) db/54(x —T(\ b))dA
0

Poincaré dual of " — 0,0" =¥ = 0J,P(R") = %ju
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Currents

uCup) =0 NuRyp) =0
0,CH  =J"+ K" | O.R™ = —K”
u _ # b=+o00 =
Link"(o) = e [ [T D)™ dA = ()
\
90" = 0

gR" = j



Unbounded motion |

- t——00 -
Yy — tVe
4

i) = gt b+ Db

-

b—s+oo < bV



Unbounded motion |

- t——00 -
Yy — tVe
4

i) = gt b+ Db

-

b—s+oo < bV

Arng s



Unbounded motion |
- t——00 -
y — tVeo
i}

i) = gt b+ Db

b—s+oo =  biy

Arng s
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Unbounded motion |
- t——00 -
y — tVeo
i}

i) = gt b+ Db

b—+oo < bV

At ¢ S
Same gauge transformation used for Al in the direction of V.
Al = AL PN — AF = LimA* € S’
V-l

Same strategy as before

R* = LimR" =
V—1

1
P(R™)+ Q"



Unbounded motion I
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Unbounded motion Il
This time
W Lim KM = Iz
0,R" = ~Limk" = e [ [T\ D)5, I =
where jry current of rectilinear motion along v,
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No need of a limit, we know the solution!

2
_JRU



Unbounded motion I

This time
ORI = ~Limk" = e [ [ (Ne(TO\ DG X =5~
where jry current of rectilinear motion along v,

8uc'ul/ =J EU

No need of a limit, we know the solution!

Unbounded motion generate:
1. A radiation field
2. A shockwave

3. A string of singularities that ends on the shockwave
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Thanks for your kind attention.



