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The worldline formalism proved to be useful to compute
various one-loop quantities of QFT’s, such as n-point
functions, propagators, effective actions and so on

O(N) spinning particles in flat space describe quite
efficiently higher spin fields (spin g in D= 4)

Coupling to curved space can provide useful information
about their quantum properties on (A)dS backgrounds

Non-commutative products can be represented in the
worldline phase space — Maybe useful for Vasiliev
theories

Gauge symmetries of the field theory are taken into
account by worldline symmetries

No need of a field theory action
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O(N) spinning particles and higher spin fields in flat space

Coupling to (A)dS and effective action with HS loop

Dimensional reduction and HS in odd dimensions

Outlook and future directions
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Consider the worldline action (i =1, ..., N)
S= /dt |:pu)'(ﬂ + éw,“%/ - %pZ]

It enjoys O(N)-extended WL supersymmetry, generated by
,02 4 [ [0y
H= E ) Q/ - (‘/};’py ) JI/ - é[wfkuj]

The generators obey the following supersymmetry algebra
{Q,', Qj} = 20j H
[J,'j./ Qk] = ifsjk Q,‘ — i5/k Qj
[Jjj, | = 16 Jip — i 6ix g — i 6y Jiwe + 1 6y ik
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e The algebrais firstclass — It can be gauged to make
the (super)symmetries local

e One introduces WL gauge fields e(7), x;(7) and g;(7) to
be coupled to the symmetry generators

e By doing so one ends up with the O(N) spinning particle
action:

1 . .
S= /o dt [pu)'(“ + 5 — eH — ix;Q — %aijJij}

In configuration space it reads

|
1 . . 2
S= [ o] g5 (0= ixaut)? + gt (5y0n— 2y)
0
At the quantum level Dirac constraints

TAR) =0, with Ta:=(Jj, Q) H)
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Canonical quantization: Fronsdal equations

Consider the simple case of D = 4 and even N = 2s
o Complexify fermions to get s pairs of oscillators:

{1&)7‘,@3"‘]} = 5;1 " LJd=1,..s

e Jj constraints — physical states are tensors characterized
by a 2 x s Young tableau

‘R> ~ RM1V1-~-MSVS(X) —

———
S

and traceless: Tr¥|R) =0 — R*,, ., =0
e The other independent constraint is a Bianchi-like equation

QIR) =0 — 9,R =0

] psvs
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potential ¢
e We solve Bianchi by introducing the HS gauge potential

IR) = Le5Q,..QLl0) = R svs = Oy -Opusr...vs

a symmetric spin s tensor

e Field equations are higher derivative — we introduce a
compensator field to recast them as

(—ZH +QQ + 3 Q/Q/TTU) |6) = QQ, Q™)

Bastianelli, Corradini, Latini; 2008

e They are nothing but Fronsdal equations for spin s with

compensators
- . —1) - | .
D¢(s) — 800 - (Z)(S) + %()2 Tr @(s) = ()3/)(8-3)

Francia, Sagnotti; 2003
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They are invariant under unconstrained gauge transformations

5¢(s) = a/\(3-1) ) 50(5-3) oc Tr /\(s-1)

Partially gauge fixing compensators to zero one gets usual
Fronsdal equations

D(f)(s) — 800 - (/)(S) + @02 Tr C)(S) =0 N
(5(,)<S> = 0/\(5,1) y Tr /\(5,1) =0 y Tr2 ()(5) =0

e For arbitrary even D = 2k one gets Fronsdal-Labastida
equations for gauge fields with rectangular (k — 1) x s
Young tableaux

e For odd N we have Fang-Fronsdal equations for fermionic
HS fields

¢ In odd dimensions the model is empty
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e Trying to couple the O(N) spinning particle to a curved
space, the SUSY algebra is not first class, obstructed by
target space curvature

e On conformally flat spaces the algebra is first class, but
with structure functions

Bastianelli, Corradini, Latini; 2008

e On maximally symmetric spaces the algebra becomes
quadratic in constraints — Simpler BRST quantization

Rabcd = b (Nachbad — Nadfbe)  —
{Qi, Q} = 20iH -5 (i + Jicdik — jjdiadut)

Q =vfehmu, H=} (nra—iwan®)~4 JyJy—bA(D,N)
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HS Effective action on (A)dS

¢ One-loop effective action given by the worldline path
integral

DxDyiDeDxDa;
st ol(Gauge)

Bastianelli, R.B., Corradini, Latini; 2012

o After gauge fixing WL symmetries one has the Heat Kernel
expansion

o= [ [ e (o)
a <<e >> — a (1 +WRT+wRET? + )
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and we get
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e For s = 0,1 known results for conformally improved scalar
and Maxwell fields

e For s = 2 there is a mismatch with known results
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SO(N) Christensen and Duff ('83) | Worldline spin 2 (2013)
ap =2 ag =2 ap =2
Vi = *% vy =7 vi = 75
v =~ e =~ v =~
; _ 1
l.e. Avp = 35

We conjecture this is a topological mismatch similar to
those found for dual differential forms

It remains at higher spins (Giombi Klebanov, 2013)

¢-regulated sum over all spins vanish (agreement with GK
for Vasiliev spectrum)

Coefficients obtained also for half-integer spins and
conformal fields in all even dimensions

Bastianelli, RB, Corradini, Latini, JHEP 1212 (2012) 113 arXiv:1210.4649
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Massive and massless HS in odd D

e O(N) spinning particle is empty in odd dimensions —
dimensional reduction from D + 1 = 2k with fixed
momentum ps = m

« Split fermions as yM = (%, 6;), the (D + 1)-dimensional
superalgebra is unchanged.

e For N = 2s use complex combinations of fermions
(4, b, (6,,0") with manifest U(s) covariance. Relevant

constraints:
12

0

J J J IJ IJ
=4 +0,— —k =1 +
t7l ! ! 5’ ’ r ! 09/(99J ’

a0, Q;=Q +mbo,

e Generic state is a sum of Lorentz tensors with §-expansion

S
R(x,1,0) = 3 & Rb-h(x,)0),..0,

n=0

Bastianelli, R.B., Corradini, Latini, to appear



Constraints

e J/ constraints impose GL(D) irreducibility. At fixed n the states

R consist of a single Lorentz tensor with Young tableau
(D =2k — 1)
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Constraints

e J/ constraints impose GL(D) irreducibility. At fixed n the states
R consist of a single Lorentz tensor with Young tableau
(D =2k —1)

1 s
Rh...ln ~
k-1
1 ... SN
RI1"'I”(X ¢):RI1..,I,7 (X)i/)p’} wﬂl d'/’:/ l;‘vﬂ‘/‘/*‘ ,L_’,/Hg Usy/‘i
, u}..ul,..,u:’..ﬂl it 1y LWs' L Wg

« KM constraints relate traces of higher rank tensors to lower
rank ones
KL Rh-+hh _ RKLI..In — g

and will enforce dynamical field equations
e Q; constraints provide integrability conditions and relations
between tensors of different ranks

QKRI1"'I” — m(_)ks+nn 5%1 ng‘..ln]
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Massive case: Pauli-Fierz

In the massive case, only independent field is
RI1"'/5 — 6/1.../5¢
Other fields expressed as derivatives on ¢

1 S
oy (—)(s=mks+1) Iy s ‘
S e R =
0|00

Relevant trace constraints are the last three, others giving
further derivatives of the e.o.m.

In terms of ¢ they are the triplet of Pauli-Fierz conditions
for the massive field

1 S

~

Dud il ottty
k-1

Mo =0, Q¢=0, (DfmZ)qﬁ:o
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Massless limit: Fronsdal-Labastida multiplet

e Letting m — 0 the tensor structures of R+ remain the
same, as well as trace constraints

e Integrability constraints now decouple and are Bianchi
equations for s + 1 independent fields QxR"/» =0

« Integrate curvatures R"- in terms of gauge potentials

oh-l
’
lohy — oy L A
Ri-h=qem, q= e Q- Qy

¢ s+ 1 different gauge fields with Young tableaux

1 S

ey
v k-2

1 ...|S-N

e In D = 3 we have a multiplet of symmetric tensors ranging
from spin zero to s — dof of (truncated) Vasiliev theory
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Massless limit: Fronsdal-Labastida multiplet

e trace constraints give e.o.m. (after a linear field redefinition
of ¢’s) as Fronsdal-Labastida equations with compensators
for a multiplet of s + 1 mixed symmetry tensors

(—2H+ QQ'+1QQy TrlJ) ol — Q,Q,Qu pMKIh-hn

(D — 0y (8’,) _ %@la} Trl‘j) (15‘/1'”/[) = 0,0,0k pIJK|I14.In
¢ Unconstrained gauge transformations

Sph-tn — Que NKIh=tn 5 K el %tr[lJ/\K]M...ln

e The model appear to be deformable to (A)dS backgrounds
(nonlinear constraint algebra), work in progress
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e massless limit —
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Example D=5 ,s=4

massless limit —
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Outlook

O(N) spinning particle quantized on conformally flat?

Dimensional reduction of several dimensions — patterns of
massless multiplets with mixed symmetry in even and odd
dimensions

Attempt to compute exact effective actions in (A)dS —
zeta function methods, log radial reduction from flat space?

Possible applications to Vasiliev theory in D = 3

Construct a “Vasiliev spinning particle” — wishful thinking
— one loop results with HS background
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