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Supergravity bosonic field content

ng scalar fields ¢'; ny vector fields Ai}; Graviton g,.

= 3 description of D = 4 stationary solutions

@ Metric: ds® = —e*V (dt + w; dx')? + eV g;; dx'dy’
@ Solutiontoa D = 3 Euclidean theory obtained from time-reduction from the
D = 4 one (Breitenlohner, Gibbons, Maison)

@ Dualizing vectors into scalars in D = 3 we end up with a sigma model describing
n =2+ ng + 2ny scalars ¢! coupled to gravity

1
TR = 7 — 5 Gu(¢)9i¢ 0’ = () .Ml = ﬁ

Field dualization : w — a, A — ZM = (27 2y)
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@ Velocity vector Q is the Noether-charge matrix:

1

Q:E / *J = Mapu Ko + 2" Ky + nyur Ke + " Kn +qa K" € &
S,

J = J; dx' being the Noether current. Q does not contain angular momentum !

@ Define new g-matrix Q,, capturing rotation:

~2

3 . .
Oy :74;/ ’LZJ[,JJ] A Nd¥ = 7 Ke + ... (SIS (¢:0¢)
§o0

0 and @, represent independent vectors in Tj. Static solution — Q,, =0
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Global symmetry and regularity

@ Action of G on the solution = action of H on Q, Qy:

0 — 0 =h'on, Qp — Q) =h""0yh (h€H)

@ Kerr-Newman solution (m, p, q, #).  Regularity : | m"

@ 0, 0, diagonalizable matrices:

2, 2 2
Pta i
2 - — Te(Q}) = WTT(Qz)

g Te(Q?) = m

@ Regularity condition can be written in a G-invariant form:

holds for extremal (T = 0) solutions
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General non-extremal solution

@ Act on the well known Kerr solution with Ehlers+Harrison transformations

= obtain general STU-model solution

@ Use coset-space geometry to find the new form of the scalar fields in term of the

Harrison 3-parameters
= ¢, U, a, Z

@ Solve the dualization integral equation and get the form of the metric relevant
quantities and of the 4-dimensional vectors

A
™ = ( G?L,VV ) =dZ" A (dt + w) + e VTN M gy np #3 dZ7

dw=—¢"* 53 (da+ Z2"CdZ) = w
(local integration) FM = dAM = M

Above results were not present in literature
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Singular limits...

@ Limits of non-extremal axisymmetric solution studied in specific contexts

(Heterotic Sugra, Kaluza Klein theories...)

@ General, frame-independent, geometric prescription though singular Harrison
transformations.

Harrison generators (Jy) = (Ja, J*) in § are in one-to-one correspondence
with (PM) = (p*, qa).

@ Act on the Kerr solution (mg, #k) by means of the Harrison transformation:
O =exp <Z log(3;) ,,,>
!

The resulting solution is a non extremal rotating one, coupled to scalar fields,

with charges in the normal form
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@ Rescale the Harrison parameters and the original angular momentum as
ﬂg — mKil 52, fK — sz Q

and then send mx — 0 while keeping 3, and € fixed.

o Only for choices of “+" yielding

I4(p,q) <0 (nonBPS solution)

there is a residual _# #0 = under-rotating single-center solution

e For choices of “+’’ yielding

I4+(p,q) > 0 (BPS and nonBPS solutions)

no residual rotation (Q, = 0) — extremal static solutions
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VIa(p, q)|

S

flmnf«.\rr. ((fb():P- ‘1) — fl‘\lf‘- (1’7 (/) ==
2my

manif. Gs-invariance, independent of ¢,: “Attractor mechanism” at work for 7 .

@ The entropy:

S71(;717(/x/1'.<¢)()7[7¢ C[) — Sexrr. ([7 61) =T ‘[4(]),(])‘\/ 1 — (/g,\%/lﬂ}l\,
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Explicit form of the solution pyq'

4-D scalars

€ —ie’’ (i=1,2,3)

in terms of the 3-D scalar fields

2macos 6 (¢ $354C5 — $2C3C485)

T a2 c0s2 0 (r +2msr2)(r + 2mss?)’
e =¢ (2 3),
e =¢€1 (2 4),

4
e — P

a?cos20 (r+2ms?)(r +2mss?)’
e¥2 = e¥1 (24 3),
e¥3 = e¥1 (2 4)

with
1+

¢y = cosh (]og \/,84) = > Zj s
—-1+4

s¢ = sinh (log \/ﬂg) = 2\/52 s

p4 :(a2 cos’ 0 (r+2m 522)(r + 2m 332)) (042 cos® 0 (r+2m 3'42)(r + 2m 3'52)) — 4a2mz(02633455 — S2S3(‘4C5)2 cos? 0.

(£=12,3,4,5),
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with explicit form

Al 7_\/§mA cos 0 cs5 55
@ A

AS = —AL(5+2),
AL = -AL(5+3),
AL = —AL(5+4),

)

pr V2ma sin® 0 (cy 5354 55(2m —r) + rsyc3cqcs)
? A

3 _ 2

AL, =4, (2+3),

4 2

Aw=A¢ (2(—)4),

5 _ 42

A, =AL (2¢5).

)




M = 1,...,8 (symplectic index)

with explicit form

. V2m A cos 6 cs ss ) V2ma sin® 0 (cy 5354 55(2m —r) + rsyc3cqcs)
Ae=——7x o AT A !
AS = —AL(5+2), AL =A% (243),

AL = -AL(5+3), AL =42 (24 4),
AL = —AL(5+4), AL =AL (245).
with

A= (r— m)2 - (m2 — az) s

A= A—a’sin?0.
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1
Mapy = m (cg +Aa+ag+ta+s+s+s +s§) :

™ — (\ﬁmcs 55,0,0,0,0, —V2mey 59, —V2mes 53, 7\/§mc454) ,

Z =ma(P.—Py) ( et cge g (ex) oy |l )

S=2rm (m (Pe — Ps) + cex (Pe — Ps)) )

Iy = —4p0q1 q2 q3 = 16m* P, P;.

(wilh Pe= cyc3cqcs, Py= sys35485, Cox = Vm?—a? ) .
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