Magnetic Properties of the QCD Medium

Marco Mariti

University of Pisa, Italy

Cortona 2014 New Frontiers in Theoretical Physics

Based on C. Bonati, M. D'Elia, MM, F. Negro and F. Sanfilippo, PRD 89, 054506 (2014)

QCD phase diagram

QCD has a rich phase diagram in the ho-T plane, intensively studied in the recent years:

- $\rho = 0$: analitic crossover separets hadronic matter and the quark gluon plasma (QGP) (well established).
- Low T and high ρ: a first order transition may be found → Neutron stars (still open question).
- If a first order is present, one expect a critical endpoint with a second order transition.
- Higher ρ: exotic phases are expected (color superconductors).

QCD with external B fields

QCD with B fields at the **strong scale**. Found in many phenomenolocical contests:

- ullet Neutron stars and compact astrophysical objects, $B\sim 10^{10}\,$ T [Duncan and Thompson, 1992]
- \bullet First phase of off-central heavy ion collisions, $B\sim 10^{15}~\text{T}$ [Skokov et al., 2009]
- \bullet Early universe, $B\sim 10^{16}~\text{T}$ [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

- QGP formed after the the collision, $au \sim 0.5 \frac{\mathrm{fm}}{c}$.
- Off-central collisions: ions generate magnetic fields, **ortogonal** to the reaction plane. Strength controlled by $\sqrt{s_{NN}}$ and the impact parameter.
- \bullet At LHC, B fields expected up to $eB \sim ~15 m_\pi^2$

These magnetic fields can lead to relevant modification of the strong dynamics.

QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also the gluon dynamics.

- Non perturbative effects lead to non trivial bahavior:
 - ▶ QCD phase diagram (location of the deconfinament cross over, ...)
 - ▶ QCD vacuum structure (chiral symmetry breaking, ...)
 - ▶ QCD equation of state (effect on the free energy of the QCD medium)

In this talk we discuss non perturbative magnetic effects on the QCD equation of state.

- QCD medium reacts as a paramagnet or a diamagnet to B fields?
- Lattice QCD → ideal tool to investigate susch issues from firt principles.

QCD on the lattice

- Start from path integral formulation of QCD in Euclidean space-time. Discretize the theory over a finite space-time lattice.

- Finite number of integration variables
 → Monte-Carlo algorithms can be used.
- ullet Sample configurations with the probability distribution: ${
 m det} Me^{-S[U]}$, then:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathrm{det} M e^{-S[U]} \mathcal{O}[U] \simeq \frac{1}{N} \sum_{i=0}^N \mathcal{O}[U^{(i)}] \; .$$

- ullet Temperature of the statistical system: $T=\frac{1}{N_t a}$, with N_t temporal extension.
- Remember: i) check finite size effects, ii) perform continuum limit.

Magnetic fields on the Lattice

- Add proper U(1) phases to the parallel transports: $U_{\mu}(n) \to U_{\mu}(n) u_{\mu}(n) \qquad u_{\mu} = \exp{(iqa_{\mu}(n))}$
- Periodic boundary conditions to reduce finite size effects → Compact manifold with no boundary.

$$\oint a_{\mu}dx_{\mu} = AB \quad \text{or} \quad \oint a_{\mu}dx_{\mu} = (A - l_x l_y)B$$

Quantization condition:

$$e^{iqBA} = e^{iqB(A-l_xl_y)} \to qB = \frac{2\pi b}{l_xl_y} = \frac{2\pi b}{a^2L_xL_y} \ , \quad b \in \mathbb{Z}$$

• E.g. $B\hat{z}$ on the lattice: discretize $a_y = Bx$:

$$u_y^{(q)}(n) = e^{ia^2qBn_x} \quad u_x^{(q)}(n)|_{n_x = L_x} = e^{-i \ a^2qL_xBn_y} \quad \text{otherwise} \quad u_\nu(n) = 1$$

Constant flux a^2B in all x-y plaquettes, exluded one plaquette at the corner, with flux $(1-L_xL_y)a^2B \to \text{Dirac}$ string.

Our method

- For "small" magnetic fields: $f(T,B)=f(T,0)+\frac{1}{2}c_2(T)B^2+\mathcal{O}(B^3)$ Then $\chi \propto c_2(T)=\left.\frac{\partial^2 f(T,B)}{\partial B^2}\right|_{B=0}$... But $\frac{\partial}{\partial B}$ not defined on the lattice!
- Analitic extension of f(T,B) (defined only for $B=b\in\mathbb{Z}$) to non-integer B.
- Calculate on the lattice $M(T,B)=\frac{\partial f(T,B)}{\partial B}$ (this is **not** the magnetization!).
- \bullet Numerical integration of M to determine :

$$\Delta f(T,b) = f(T,b) - f(T,0) = \int_0^b M(B,T)dB \quad b \in \mathbb{Z}.$$

• B-dependent additive renormalizations are removed using:

$$\Delta f_r(T,b) = \Delta f(T,b) - \Delta f(0,b) .$$

M computed at T=0 (red line) and $T\approx 225$ MeV (black line)

- Unphysical oscillations→ B no more quantized
- ullet To evaluate Δf , perform numerical integration over M spline interpolations.

Magnetic susceptibility

We need to estimate $c_2(T)$ defined by $\Delta f(B_k,T) \approx \frac{1}{2}c_2(T)B_k^2$. To minimize error propagation in the integration we fit:

$$f(b,T) - f(b-1,T) = \int_{b-1}^{b} M(B,T)dB$$

with the function $\frac{1}{2}c_2(T)[b^2-(b-1)^2]=\frac{1}{2}c_2(T)(2b-1).$

 c₂(T) determined from linear fit coefficient. Then:

$$\tilde{\chi}(T) = -\frac{e^2 \mu_0 c}{18\hbar \pi^2} L^4 c_2(T)$$

 Blue points to check finite size effects→ Good.

Our method

 For small field and a linear, homogeneous, isotropic medium, the magnetization is proportional to the field:

$$\mathbf{M} = \tilde{\chi} \frac{\mathbf{B}}{\mu_0} = \chi \mathbf{H}$$

where ${\bf B}$ total field, ${\bf H}=\frac{{\bf B}}{\mu_0}-{\bf M}$ external field, and $\chi=\frac{\tilde{\chi}}{1-\tilde{\chi}}$.

In the small field limit we can use:

$$\Delta f = \int \mathbf{H} d\mathbf{B} \ \rightarrow \Delta f_r = -\int \mathbf{M} d\mathbf{B} \approx -\frac{\tilde{\chi}}{\mu_0} \int \mathbf{B} d\mathbf{B} = -\frac{\tilde{\chi}}{2\mu_0} \mathbf{B}^2$$

- ullet Our simulations are QED quenched, no backreaction from the medium o ${f B}$ coincides with the external field added to the Dirac operator.
- QED quench does not affect the $\tilde{\chi}$ measure. However, adding the backreaction of the medium increase Δf_R by a factor $1/(1-\tilde{\chi})^2 \to \text{Irrelevant}$ a posteriori.

Results

Continuum extrapolation of $\tilde{\chi}$ from our lattice results.

- The QCD medium is a paramegnet in all the explored temperature.
- Sharp increase of $\tilde{\chi}$ above $T_C \sim 150-160$ MeV.
- $\bullet \ \, {\sf Agreement\ at\ low}\ T \ \, {\sf with\ HRG\ behavior:} \\$

$$\tilde{\chi}(T) = A \mathrm{exp}(-M/T)$$

Agreement at high T with pQCD behavior:

$$\tilde{\chi}(T) = A \log(T/M)$$

• We observed a linear response up to $eB \approx 0.2 \text{ GeV}^2$.

Pressure contribution

Magnetic contribution to the pressure: $\Delta P(B) = -\Delta f = \frac{1}{2}\tilde{\chi}(eB)^2$.

Of the order 10% for $0.1~\text{GeV}^2$, 50% for $0.2~\text{GeV}^2$.

HRG

Low T: check with the hadron resonance model predictions \rightarrow Effective model with hadrons as fundamental d.o.f.

HRG predicts diamagnetic behavior below T_c [Endrodi, 2013]

- → Something is missing in the model?
- → Need more statistics at low T?

Conclusions

- The QCD medium medium behaves as a paramagnet in all the explored temperatures.
- Weak magnetic activity in the confined phase, while the magnetic susceptibility increase sharply across $T_c \approx 150-160$ MeV.
- The QCD medium has linear response up to $eB \approx 0.2 \text{ GeV}^2$.
- The magnetic contribution to the preassure is 10-50% in the range of fields expected at LHC, $0.1-0.2~{\rm GeV^2}.$

Future studies:

- Determination of higher order terms \rightarrow relevant for cosmological models, where $eB \sim 1~{\rm GeV}^2$.
- c quark contributions can be relevant at higher temperatures.