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QCD phase diagram

QCD has a rich phase diagram in the ρ− T plane, intensively studied in the recent years:

• ρ = 0: analitic crossover separets
hadronic matter and the quark gluon
plasma (QGP) (well established).

• Low T and high ρ: a first order tran-
sition may be found→ Neutron stars
(still open question).

• If a first order is present, one expect
a critical endpoint with a second or-
der transition.

• Higher ρ: exotic phases are expected
(color superconductors).



QCD with external B fields

QCD with B fields at the strong scale. Found in many phenomenolocical contests:

• Neutron stars and compact astrophysical objects, B ∼ 1010 T [Duncan and Thompson, 1992]

• First phase of off-central heavy ion collisions, B ∼ 1015 T [Skokov et al., 2009]

• Early universe, B ∼ 1016 T [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

• QGP formed after the the collision, τ ∼
0.5 fm

c
.

• Off-central collisions: ions generate mag-
netic fields, ortogonal to the reaction
plane. Strength controlled by

√
sNN and

the impact parameter.

• At LHC, B fields expected up to
eB ∼ 15m2

π

These magnetic fields can lead to relevant modification of the strong dynamics.



QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also
the gluon dynamics.

• Non perturbative effects lead to non trivial bahavior:

. QCD phase diagram (location of the deconfinament cross over, ...)

. QCD vacuum structure (chiral symmetry breaking, ...)

. QCD equation of state (effect on the free energy of the QCD medium)

In this talk we discuss non perturbative magnetic effects on the QCD equation of state.

• QCD medium reacts as a paramagnet or a diamagnet to B fields?

• Lattice QCD → ideal tool to investigate susch issues from firt principles.



QCD on the lattice

• Start from path integral formulation of QCD
in Euclidean space-time. Discretize the theory
over a finite space-time lattice.

•

{
ψ(n) quark fields

Uµ(n) = eiagA
a
µ(n) parallel transporters

• Finite number of integration variables
→ Monte-Carlo algorithms can be used.

Ψ(n) Ψ(n+μ)

Uμ(n)

• Sample configurations with the probability distribution: detMe−S[U ], then:

〈O〉 =
1

Z

∫
D[U ]detMe−S[U ]O[U ] ' 1

N

N∑
i=0

O[U (i)] .

• Temperature of the statistical system: T = 1
Nta

, with Nt temporal extension.

• Remember: i) check finite size effects, ii) perform continuum limit.



Magnetic fields on the Lattice

• Add proper U(1) phases to the parallel transports:
Uµ(n)→ Uµ(n)uµ(n) uµ = exp (iqaµ(n))

• Periodic boundary conditions to reduce finite size ef-
fects → Compact manifold with no boundary.

• Charge moving along a closed path with Bẑ orthogonal
and homogeneous. Phase gained:∮

aµdxµ = AB or

∮
aµdxµ = (A− lxly)B

Quantization condition:

eiqBA = eiqB(A−lxly) → qB =
2πb

lxly
=

2πb

a2LxLy
, b ∈ Z

• E.g. Bẑ on the lattice: discretize ay = Bx:

u(q)
y (n) = eia

2qBnx u(q)
x (n)|nx=Lx = e−i a

2qLxBny otherwise uν(n) = 1

Constant flux a2B in all x-y plaquettes, exluded one plaquette at the corner, with flux
(1− LxLy)a2B → Dirac string.



Our method

• For ”small” magnetic fields: f(T,B) = f(T, 0) + 1
2
c2(T )B2 +O(B3)

Then χ ∝ c2(T ) = ∂2f(T,B)

∂B2

∣∣∣
B=0

... But ∂
∂B

not defined on the lattice!

• Analitic extension of f(T,B) (defined only for B = b ∈ Z) to non-integer B.

• Calculate on the lattice M(T,B) = ∂f(T,B)
∂B

(this is not the magnetization!).

• Numerical integration of M to determine :

∆f(T, b) = f(T, b)− f(T, 0) =

∫ b

0

M(B, T )dB b ∈ Z.

• B-dependent additive renormalizations are removed using:

∆fr(T, b) = ∆f(T, b)−∆f(0, b) .



M

M computed at T = 0 (red line) and T ≈ 225 MeV (black line)
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• Unphysical oscillations→ B no more quantized

• To evaluate ∆f , perform numerical integration over M spline interpolations.



Magnetic susceptibility

We need to estimate c2(T ) defined by ∆f(Bk, T ) ≈ 1
2
c2(T )B2

k. To minimize error
propagation in the integration we fit:

f(b, T )− f(b− 1, T ) =

∫ b

b−1

M(B, T )dB

with the function 1
2
c2(T )[b2 − (b− 1)2] = 1

2
c2(T )(2b− 1).

• c2(T ) determined from linear fit co-
efficient. Then:

χ̃(T ) = − e
2µ0c

18~π2
L4c2(T )

• Blue points to check finite size
effects→ Good.
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Our method

• For small field and a linear, homogeneous, isotropic medium, the magnetization is
proportional to the field:

M = χ̃
B

µ0
= χH

where B total field, H = B
µ0
−M external field, and χ = χ̃

1−χ̃ .

• In the small field limit we can use:

∆f =

∫
HdB → ∆fr = −

∫
MdB ≈ − χ̃

µ0

∫
BdB = − χ̃

2µ0
B2

• Our simulations are QED quenched, no backreaction from the medium → B coincides
with the external field added to the Dirac operator.

• QED quench does not affect the χ̃ measure. However, adding the backreaction of the
medium increase ∆fR by a factor 1/(1− χ̃)2 → Irrelevant a posteriori.



Results

Continuum extrapolation of χ̃ from our lattice results.

• The QCD medium is a parameg-
net in all the explored tempera-
ture.

• Sharp increase of χ̃ above
TC ∼ 150− 160 MeV.

• Agreement at low T with HRG be-
havior:

χ̃(T ) = Aexp(−M/T )

• Agreement at high T with pQCD
behavior:

χ̃(T ) = Alog(T/M)

• We observed a linear response up
to eB ≈ 0.2 GeV2.
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Pressure contribution

Magnetic contribution to the pressure: ∆P (B) = −∆f = 1
2
χ̃(eB)2.
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Of the order 10% for 0.1 GeV2, 50% for 0.2 GeV2.



HRG

Low T: check with the hadron resonance model predictions→ Effective model with
hadrons as fundamental d.o.f.
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HRG predicts diamagnetic behavior below Tc [Endrodi, 2013]

→ Something is missing in the model?

→ Need more statistics at low T?



Conclusions

• The QCD medium medium behaves as a paramagnet in all the explored temperatures.

• Weak magnetic activity in the confined phase, while the magnetic susceptibility
increase sharply across Tc ≈ 150− 160 MeV.

• The QCD medium has linear response up to eB ≈ 0.2 GeV2.

• The magnetic contribution to the preassure is 10− 50% in the range of fields expected
at LHC, 0.1− 0.2 GeV2.

Future studies:

• Determination of higher order terms → relevant for cosmological models, where
eB ∼ 1 GeV2.

• c quark contributions can be relevant at higher temperatures.


