AMS02, Fermi and Planck space experiments: an experimentalist perspective.

> M. Incagli – INFN Pisa Cortona (AR) – May 2014

Outline

- 1. Detectors for Space Experiments
 - Why
 - How
 - Where (this is easy: in Space)
- 2. State of the arts experiments:
 - AMS02 : charged cosmic rays
 - Fermi : high energy (1-1000 GeV) photons
 - Planck : CMB

1. Detector for Space Experiments

- Building experiments is an art
- *Each apparatus is unique* there are some standard *pieces* (tracker, calorimeter, ...) but each composition is a *delicate interplay between experimental goals, theory, personal attitude* ... and financing agencies!
- This is even more true in Space Experiments, which is a relatively young field of research
- In the first part of my talk, I will try to show the *philosphy* behind the experimental solutions that have been taken

Charged Cosmic Rays

Neutral Cosmic Rays

- Neutrinos, gravitational waves \rightarrow not discussed here
- Photons \rightarrow Multi-WaveLength search

30-1000 GHz \rightarrow ~ 10^{-4} eV

0.1-500 GeV \rightarrow ~10¹¹ eV

Space experiments

- Sensitive to "primary" component (i.e. before interacting with earth atmosphere)
- A higher precision on energy and on chemical composition (Z, isotopes) can be reached
- ★ With magnet → sensitivity to anti-particles
- Long period of continuos data taking
- Limited mass
- Limited geometrical acceptance
- Large cost

High-energy space experiments

- High-energy: above 1-10 GeV
- Different *categories* of experiments are possible:
- 1. Magnetic spectrometer (à la AMS02)
- 2. Pair-conversion telescope (à la Fermi)
- 3. Cosmic Rays calorimeter (*à la* CREAM or ATIC, but also many new proposals: CALET, ISS-CREAM, GAMMA400, HERD, ...)

Spectrometers vs. calorimeters

- <u>Spectrometers</u> : sign of the charge and momentum
 - access to positrons and antiprotons
 - access to CR isotopical composition
 - BUT: big magnets are heavy (permanent magnets) or hard to operate in space(superconducting magnets) → some R&D in progress
- <u>Pair-conversion telescope</u> : gamma physics
 - dedicated tracking stage (>1X₀) in which γ ->e⁺e⁻
 - much better Point Spread Function (PSF = angular resolution)
 - adds some complexity: reduce FOV or loose resolution
- <u>Calorimeters</u> discrimination of nuclei (Z measurement) and ep (electron-proton) separation
 - maximum acceptance
 - reach of high energies (~100-1000 TeV) for hadrons
 - precise (large statistics) measurement of e^++e^- flux

Integral counts: fluxes rapidly decrease

Comparison AMS02-Fermi

The issue of background

Many issues ... I will discuss just one: gamma line search

$$Q = \frac{n_s}{\sqrt{n_b}} \propto \sqrt{\frac{\mathcal{E}_{\rm f}}{\sigma_E/E}} \qquad \text{exposure factor} \\ \text{energy resolution}$$

- Better energy resolution is good!
 - But only if you are not trading too much acceptance for that.

And now the 3 musketeers

AMS02 redundancy Example 1: e/p rejection with TRD

- electrons and protons are selected by looking at the sign in the tracker and at ECAL shower shape
- with this clean sample, *probability density functions* in each of the 20 TRD layers can be built from data

ep discrimination with TRD TRD estimator = $-\ln(P_e/(P_e + P_p))$

17

 $\mathcal{P}_{e}^{(i)} \cong \mathcal{P}_{e}^{(i)} \cong \mathcal{P}_{e}^{(i)} \oplus \mathcal{P}_{e}^{(i)}$

Are TRD and ECAL correlated?

- Correlation studied with pure (99.9%) primary proton beam of 400GeV/c at Cern SPS
- No sign of correlation observed

18

Physics case: Dark Matter indirect search

 DM annihilation → decay products, in particular antiparticles, observed by space experiments

Cortona - 30/05/2014

M. Incagli - INFN Pisa

Dark Matter mass scale

- Small problem: ~50 orders of magnitude to investigate!
- We "like" weak scale because it could solve, at the same time:

- thermal cross section $\rightarrow \sigma v \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$

- weak scale \rightarrow supersimmetry

Hints of Dark Matter?

AMS-02 Electron Flux

23

AMS-02 Positron Flux

 The spectral index and its dependence on energy is clearly different from the electron spectrum.

The all electrons flux

Hints of Dark Matter?

- Strong limits set by antiproton flux (PAMELA)
- Must invent *ad hoc* (not really "natural") theories
- AMS02 result on antiprotons eagerly expected
- It is important to constrain the background

AMS redundancy Example 2: Boron-to-Carbon ratio

- Carbon : primary particle
- Boron : secondary particle produced in interactions of C with ISM (InterStellar Medium)

Future prospects

- final analyses (plots available 2° week of June):
 - total electrons < 700/1000 GeV</p>
 - electron flux < 700 GeV</p>
 - positron flux <500GeV</p>
- Close to completion
 - proton flux <1.8TeV</p>
- next in line:
 - He, B/C \rightarrow end of the summer
 - fluxes of B, C, O \rightarrow end of summer
 - − light nuclei \rightarrow ?
- mostly wanted: antiprotons ... no prediction;
 - hard, have to do it carefully!

Fermi

Fermi LAT

- Pair-conversion telescope
 - good background rejection due to "clear" γ-ray signature
 - (also sensitive to CR electrons)
- Tracker: pair conversion, tracking
 - angular resolution is dominated by multiple scattering below ~GeV
- Calorimeter: 8.6 X0 for perpendicular incidence
 - use shower profile to compensate for the leakage

Si Tracker 70 m², 228 μm pitch ~0.9 million channels

energy band: 20MeV to >300 GeV effective area: >8000 cm2 FOV: >2.4 sr angular resolution: ~0.1 deg energy resolution: 5-10%

> Anti-coincidence Detector Segmented scintillator tiles

Cortona - 30/05/2014

Dark Matter (DM) Search with γ-rays

(I will skip DM search from CR electron/positron)

Gamma-rays may encrypt the DM signal

DM Search Strategies with γ-rays

- Spatial signature
 Fermi-LAT data
 Galactic Diffuse, Sources, isotropic
 OM signal (e.g., MW halo)?
 (e.g., MW halo)
 - Spectral signature

Good understanding of the Galactic diffuse emission and of the instrument is crucial

M. Incagli - INFN Pisa

DM Search Strategies with γ-rays

1) Satellites: Dwarf galaxies

Stacking analysis using 10 dSphs and 2 years data
 – conservative limit on DM cross section (no "boost factor")

	l	b	d	$\overline{\log_{10}(J)}$	σ
Name	(degree)	(degree)	(kpc)	(log ₁₀ [GeV	$^{2} \text{ cm}^{-5}$])
Bootes I	358.08	69.62	60	17.7	0.34
Carina	260.11	-22.22	101	18.0	0.13
Coma Berenices	241.9	83.6	44	19.0	0.37
Draco	86.37	34.72	80	18.8	0.13
Fornax	237.1	-65.7	138	17.7	0.23
Sculptor	287.15	-83.16	80	18.4	0.13
Segue 1	220.48	50.42	23	19.6	0.53
Sextans	243.4	42.2	86	17.8	0.23
Ursa Major II	152.46	37.44	32	19.6	0.40
Ursa Minor	104.95	44.80	66	18.5	0.18

Ackermann+11, PRL 107, 241302

M_{WIMP} >=20 GeV to satisfy < σv >=3x10⁻²⁶ cm³ s⁻¹

2) Milky Way DM Halo

- Another recent and complementary DM search for MW halo
 - Search for continuous emission from DM annihilation/decay in the smooth MW halo

DM signal

 Analyze bands 5deg off the plane
 decrease astrophysical BG
 mitigate uncertainty from inner slope of DM density profile
 fit DM source and astrophysical emission simultaneously

Constraints on DM Model

- Modeling the astrophysical emission improves DM constraints
- w/ astrophysical BG, the limit constrains the thermal relic cross section for <u>WIMP with mass > 30 GeV</u> (comparable to dSphs)

Ackermann+12, ApJ 761, 91

Cortona - 30/05/2014

M. Incagli - INFN Pisa

Gamma line search

Evolution of line-like Feature near 135 GeV:

- 1. 1D PDF, reprocessed data (better energy calibration)
 - 3.7 σ (local) at 135 GeV
- 2. 2D PDF, reprocessed data
 - 3.4 σ (local) at 135 GeV (Energy dispersion in data is narrower than expected when P_E is taken into account)
 - <2 σ global

Fermi Future Prospects in DM search

- Dwarfs will remain a prime target (halo analysis: close match)
 - increased observation time
 - discovery of new dwarfs
 - sensitive to higher energies
- Next generation Cherenkov Telescope (e.g., CTA) will extend the limit to higher WIMP masses
- Extend significance of line search

The Planck experiment launch 14 May 2009

The Planck satellite

- 2 instruments:
 - LFI (led by Italy)
 - HEMTs (transitors)
 - cooled at 4K
 - sensitive to 30-100 GHz
 - HFI (led by France/UK)
 - bolometer array
 - cooled at 0.1K
 - sensitive to 100-857 GHz

Consistency: HFI 100 GHz – LFI 70 GHz

Red is mostly CO, Blue is mostly free-free. CMB is gone!

3 minutes of quasi 'raw" data (i.e. only demodulated). The Solar (cosmological) dipole is clearly visible at 145GHz with a 60 seconds period (the satellite rotates at 1 rpm), while the Galactic plane crossings (2 per rotation) are more visible at 545 GHz than at 143 GHz. The Dark bolometer sees no sky signal, but displays a similar population of glitches from cosmic rays.

F. R. Bouchet: "The Planck High Frequency Instrument Sky"

45

The CMB map

Conclusions

- Cosmic rays (CR) spans many orders of magnitude and flux → very different experimental techniques are required
- Space experiments are able to see "primary" cosmic rays → BUT limited geometrical acceptance
- The CR flux decreases very rapidly with energy → hard to reach energies above few TeV (electrons) or few hundred TeV (protons)
- The TeV energy range is particularly interesting for DM search (WIMP thermal cross section) → interest partially decreased after antiproton and gamma results