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Thermalization in quantum many body systems

Thermalization : 〈Â(t→∞)〉 = Tr(Âρµ−can)

Many numerical and experimental evidences supporting thermalization
in some quantum systems [Rigol et al (2009), Trotzky et al. (2012)... ] ...

but why should a quantum system thermalize?

Long-Standing Questions
[Von Neumann ’29; Birkhoff ’30]

I Does an isolated quantum system equilibrate to a statistical ensemble for
large times, starting from an arbitrary initial state?

I How do correlation functions depend on time?

Out of equilibrium quantum physics

2/20



Thermalization in quantum many body systems

Thermalization : 〈Â(t→∞)〉 = Tr(Âρµ−can)
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Quantum quenches

I prepare a many-body quantum system in an eigenstate |ψ0〉
of a pre-quenched hamiltonian H

I from t = 0 let it evolve unitarily with a different
post-quenched hamiltonian H ′

|ψ(t)〉 = e−iH
′t|ψ0〉, [H,H ′] 6= 0

Evolution from an out of equilibrium state |ψ0〉!

Main results of quantum quenches literature

1. Relaxation
2. Light-cone spread
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1. Relaxation

Can the whole system attain stationary behaviour?

4/20



A ∪ B: initial pure state + unitary evolution

I It can never relax as a whole (pure state ∀t)
I First taking B infinite, then t→∞

a finite subsystem A can relax!

B

A

Only local observables relax!

Physical picture: B acts like a “thermal” bath on A
No time averaging involved!

Reduced Density Matrix of A

ρA(t) ≡ TrB

[
ρA∪B(t)

]
I stationary and allows for an ensemble description (mixed state)

I determines all local correlation functions
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...To which ensemble?

Common Belief

Non Integrable Systems

ρA = ρcan =
e−βH

Z

Thermal ensemble
only one integral of motion E

few info on the whole Initial state
[Deutsch ’91; Srednicki ’95]

Integrable Systems

ρA = ρGGE =
e−

∑
m βmIm

Z

Non thermal ensemble
all local integrals of motions Im

full info on the whole Initial state
[Rigol et al ’07; Eisert; Cramer...]

... based on

I theoretical, experimental and numerical outcomes
[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...)
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2. Light-cone spread
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Equal time two point function for fixed
separation r

I exponential decay in time for t . r/2

I saturation to t-independent values for
t & r/2

Physical Interpretation
[Calabrese, Cardy ’07]

Eψ0 � EGS, |ψ0〉 acts as a source of excitations

I quasi-particle emitted on scales E−1
ψ0

are entangled

I they move classically with light-cone trajectories and spread

I for t . r/2 causally disconnected regions

I after a transient t & r/2 observables freeze-out

Horizon effect predicts freeze-out of n (>2)-point functions
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Objective

Study the time evolution of local observables after a quench
[1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Let’s discuss first this point

In the Transverse field Ising chain
[solvable but non-trivial as free theories]
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Initial state

In the literature, only focus on ground states of some local hamiltonian as I.S.

Why should we focus on excited ones?

I They are much more common than ground states

I Different behaviour of entanglement entropy in equilibrium:

SGS ' Area law versus Sexc ' Volume law

I Look for universal behaviour

I Room for new effects
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Quenched Transverse field Ising chain

hc = 1

h〈0|σxj |0〉 6= 0 〈0|σxj |0〉 = 0
H(h) = −1

2

N∑

j=1

[σxj σ
x
j+1 + hσzj ] + PBC

|0〉: ground state of H(h)

From interacting spins σi to free spinless fermions bk

H(h) =
∑
k

εh(k)
(
b†kbk −

1

2

)
ε2h(k) = 1 + h2 − 2h cos

2πk

N

Interaction quench h → h′

Initial state: |ψ0〉 = |mk〉 ≡
∏
k(b†k)mk |0〉

I excited state of pre-quenched hamiltonian H(h)

I Z2-invariant: 〈ψ0|σxj |ψ0〉 = 0

I mk: fermionic initial occupation number of k-mode

11/20



Quenched Transverse field Ising chain

hc = 1

h〈0|σxj |0〉 6= 0 〈0|σxj |0〉 = 0
H(h) = −1

2

N∑

j=1

[σxj σ
x
j+1 + hσzj ] + PBC

|0〉: ground state of H(h)

From interacting spins σi to free spinless fermions bk

H(h) =
∑
k

εh(k)
(
b†kbk −

1

2

)
ε2h(k) = 1 + h2 − 2h cos

2πk

N

Interaction quench h → h′

Initial state: |ψ0〉 = |mk〉 ≡
∏
k(b†k)mk |0〉

I excited state of pre-quenched hamiltonian H(h)

I Z2-invariant: 〈ψ0|σxj |ψ0〉 = 0

I mk: fermionic initial occupation number of k-mode

11/20



Quenched Transverse field Ising chain

hc = 1

h〈0|σxj |0〉 6= 0 〈0|σxj |0〉 = 0
H(h) = −1

2

N∑

j=1

[σxj σ
x
j+1 + hσzj ] + PBC

|0〉: ground state of H(h)

From interacting spins σi to free spinless fermions bk

H(h) =
∑
k

εh(k)
(
b†kbk −

1

2

)
ε2h(k) = 1 + h2 − 2h cos

2πk

N

Interaction quench h → h′

Initial state: |ψ0〉 = |mk〉 ≡
∏
k(b†k)mk |0〉

I excited state of pre-quenched hamiltonian H(h)

I Z2-invariant: 〈ψ0|σxj |ψ0〉 = 0

I mk: fermionic initial occupation number of k-mode

11/20



Our results
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Local relaxation in the TFIC from excited states

AB B

` spins
“A” is a block of ` contiguous spins

ρA(t) = TrB
(
|ψ0(t)〉〈ψ0(t)|

)
|ψ0(t)〉 = e−iH(h′)t|ψ0〉

Result: GGE works even for excited states!

ρGGE,A = ρA(∞)

Idea:

Free systems → Wick’s thm → just need to prove it for propagators!

I exactly solvable dynamics

I ensemble averages ρGGE,A = e−
∑
k λknk

Z

nk: post-quench conserved fermionic occupation number operators
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Local conserved charges from excited states

〈I+n 〉 =

∫ +π

−π

dk

4π
cos(nk)εk

[
1 +mS

k cos ∆k

]
mS
k ≡ m−k +mk − 1

〈I−n 〉 = −
∫ +π

−π

dk

4π
sin[(n+ 1)k]mA

k mA
k ≡ m−k −mk

Two classes of IS

I mA
k = 0: Only 〈I+n 〉 6= 0 (GS belongs to this class!)

I mA
k 6= 0: Both 〈I+n 〉 and 〈I−n 〉 6= 0

Result: Doubling of non zero local conservation laws wrt ground state

Does the increased number of conservation laws in mA
k

alter the asymptotic time dependence of correlations?
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Transverse magnetization

mz(t) =

∫ π

−π

dk

4π
eiθkmS

k cos ∆k︸ ︷︷ ︸
stationary part

−i
∫ π

−π

dk

4π
eiθkmS

k sin ∆k cos(2εkt)︸ ︷︷ ︸
time−dependent

Asymptotic behaviour: stationary phase approximation

m(k) analytic

mz(t) ' t−
3
2 +O(t−

2n+1
2 )

AS GROUND STATE

HdL

m3HkL=Hk+ΠL�H4ΠL

10 20 30 40 50 60

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

t

m
z

m(k) non-analytic

mz(t) ' t−1 +O(t−
2n+1

2 )

NOVELTY!

HbL

m1HkL=ΘHk-Π�2L

10 20 30 40 50 60

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

t

m
z
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Longitudinal spin-spin function

ρxx(`, t) ≡ 〈Ψ0(t)|σxnσx`+n|Ψ0(t)〉

HbL

l=60

0.0 0.5 1.0 1.5 2.0
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

5. ´ 10-6

6. ´ 10-6

t�tF

Ρxx

horizon

m(k) =
k2

(2π)2

` = 60

h = 1/3, h′ = 2/3

tF = `/(2vmax)

vmax = min[h, 1]

Results

I Emergent light-cone spreading of correlations (as for GS)

I Common behaviour ∀mk analyzed (stepfunction, linear, quadratic)...

...EXCEPT ONE!

16/20



Longitudinal spin-spin function

ρxx(`, t) ≡ 〈Ψ0(t)|σxnσx`+n|Ψ0(t)〉

HbL

l=60

0.0 0.5 1.0 1.5 2.0
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

5. ´ 10-6

6. ´ 10-6

t�tF

Ρxx

horizon

m(k) =
k2

(2π)2

` = 60

h = 1/3, h′ = 2/3

tF = `/(2vmax)

vmax = min[h, 1]

Results

I Emergent light-cone spreading of correlations (as for GS)

I Common behaviour ∀mk analyzed (stepfunction, linear, quadratic)...

...EXCEPT ONE!

16/20



Longitudinal spin-spin function

ρxx(`, t) ≡ 〈Ψ0(t)|σxnσx`+n|Ψ0(t)〉

HbL

l=60

0.0 0.5 1.0 1.5 2.0
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

5. ´ 10-6

6. ´ 10-6

t�tF

Ρxx

horizon

m(k) =
k2

(2π)2

` = 60

h = 1/3, h′ = 2/3

tF = `/(2vmax)

vmax = min[h, 1]

Results

I Emergent light-cone spreading of correlations (as for GS)

I Common behaviour ∀mk analyzed (stepfunction, linear, quadratic)...

...EXCEPT ONE!

16/20



Longitudinal spin-spin function

ρxx(`, t) ≡ 〈Ψ0(t)|σxnσx`+n|Ψ0(t)〉

HbL

l=60

0.0 0.5 1.0 1.5 2.0
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

5. ´ 10-6

6. ´ 10-6

t�tF

Ρxx

horizon

m(k) =
k2

(2π)2

` = 60

h = 1/3, h′ = 2/3

tF = `/(2vmax)

vmax = min[h, 1]

Results

I Emergent light-cone spreading of correlations (as for GS)

I Common behaviour ∀mk analyzed (stepfunction, linear, quadratic)...

...EXCEPT ONE!

16/20



The anomalous state: mk = θ(k − π
2 )

Different behaviour for different `!

HcL

l=60

0 1 2 3 4

0.02

0.04

0.06

0.08

t�tF

Ρ
xx

l=90

HdL
0 1 2 3 4

0.00000

0.00005

0.00010

0.00015

0.00020

t�tF

Ρ
xx

` = 60 ` = 90

decay

GGE-limit

??

Still open problems

I Is it related to 〈I−n 〉 6= 0 ?

I But other mA
k 6= 0 display usual light-cone effect...
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Analytical full time evolution of ρxx(`, t)

I Focus on quenches within the ferromagnetic phase h, h0 < 1

I Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese ’08]

I Extension only to mA
k = 0

ρxxmk (`, t) ' Cmk

typical of excited states︷ ︸︸ ︷
exp

[
`

∫ π

−π

dk

2π

(
1− 2|ε′k|

t

`

)
ln(|mS

k |)θ(`− 2|ε′k|t)
]

× exp

[
2t

∫ π

−π

dk

2π
|ε′k| ln[| cos ∆km

S
k |]θ(`− 2|ε′k|t)

]
× exp

[
`

∫ π

−π

dk

2π
ln[| cos ∆km

S
k |]θ(2|ε′k|t− `)

]
Universal properties:

I t� tF , evolution in t does not depend on mS
k (first two lines)

I t� tF , constant in time (third line)

I At fixed time, exponential decreasing with `
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Entanglement Entropy

AB B

` spins
SA = −Tr[ρA ln ρA]

HcL

mHkL=k2�H2ΠL2

0.0 0.5 1.0 1.5 2.0
0.24

0.26

0.28

0.30

0.32

0.34

t�tF

S�
l

I Light-cone behaviour

I Dependence on mS
k

I S`/` 6= 0 at t = 0 due to excitations
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Conclusions & Outlooks

We have considered quenches from excited states

Validity of GGE

Horizon effect for S` and ρxx`

Still open problems

Non-trivial dependence for mA
k ?

Excitations in truly interacting models?
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