

Quantum quenches from excited states in the Ising chain

Leda Bucciantini

Università di Pisa

- New Frontiers in Theoretical Physics, Cortona, 28-31 May 2014 -

with Pasquale Calabrese and Marton Kormos arXiv: 1401.7250 J. Phys. A.: Math. Theor. **47** (2014) 175002

Thermalization in quantum many body systems

Thermalization:
$$\langle \hat{A}(t \to \infty) \rangle = \text{Tr}(\hat{A}\rho_{\mu-\text{can}})$$

Many numerical and experimental evidences supporting thermalization in some quantum systems [Rigol et al (2009), Trotzky et al. (2012)...] ...

but why should a quantum system thermalize?

Thermalization in quantum many body systems

Thermalization: $\langle \hat{A}(t \to \infty) \rangle = \text{Tr}(\hat{A}\rho_{\mu-\text{can}})$

Many numerical and experimental evidences supporting thermalization in some quantum systems [Rigol et al (2009), Trotzky et al. (2012)...] \dots

but why should a quantum system thermalize?

Long-Standing Questions

[Von Neumann '29; Birkhoff '30]

- Does an isolated quantum system equilibrate to a statistical ensemble for large times, starting from an arbitrary initial state?
- How do correlation functions depend on time?

Thermalization in quantum many body systems

Thermalization: $\langle \hat{A}(t \to \infty) \rangle = \text{Tr}(\hat{A}\rho_{\mu-\text{can}})$

Many numerical and experimental evidences supporting thermalization in some quantum systems [Rigol et al (2009), Trotzky et al. (2012)...] \dots

but why should a quantum system thermalize?

Long-Standing Questions

[Von Neumann '29; Birkhoff '30]

- Does an isolated quantum system equilibrate to a statistical ensemble for large times, starting from an arbitrary initial state?
- How do correlation functions depend on time?

Out of equilibrium quantum physics

Quantum quenches

- \blacktriangleright prepare a many-body quantum system in an eigenstate $|\psi_0\rangle$ of a pre-quenched hamiltonian H
- ▶ from t = 0 let it evolve unitarily with a different post-quenched hamiltonian H'

$$|\psi(t)\rangle = e^{-iH't}|\psi_0\rangle, \qquad [H,H'] \neq 0$$

Evolution from an out of equilibrium state $|\psi_0\rangle$!

Quantum quenches

- \blacktriangleright prepare a many-body quantum system in an eigenstate $|\psi_0\rangle$ of a pre-quenched hamiltonian H
- ▶ from t = 0 let it evolve unitarily with a different post-quenched hamiltonian H'

$$|\psi(t)\rangle = e^{-iH't}|\psi_0\rangle, \qquad [H,H'] \neq 0$$

Evolution from an out of equilibrium state $|\psi_0\rangle$!

Main results of quantum quenches literature

- 1. Relaxation
- 2. Light-cone spread

1. Relaxation

Can the whole system attain stationary behaviour?

 $A \cup B$: initial pure state + unitary evolution

- It can never relax as a whole (pure state $\forall t$)
- ► First taking B infinite, then t → ∞ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a "thermal" bath on A No time averaging involved!

 $A \cup B$: initial pure state + unitary evolution

- It can never relax as a whole (pure state $\forall t$)
- ► First taking B infinite, then t → ∞ a finite subsystem A can relax!

Only local observables relax!

Physical picture: B acts like a "thermal" bath on A No time averaging involved!

Reduced Density Matrix of A

 $\rho_{\mathsf{A}}(t) \equiv \mathrm{Tr}_{\mathsf{B}}\big[\rho_{\mathsf{A}\cup\mathsf{B}}(t)\big]$

- stationary and allows for an ensemble description (mixed state)
- determines all local correlation functions

Common Belief

Non Integrable Systems

$$\rho_A = \rho_{\rm can} = \frac{e^{-\beta H}}{Z}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Common Belief

Non Integrable Systems

$$\rho_A = \rho_{\rm can} = \frac{e^{-\beta H}}{Z}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_A = \rho_{\rm GGE} = \frac{e^{-\sum_m \beta_m I_m}}{Z}$$

Non thermal ensemble all local integrals of motions ${\cal I}_m$ full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

Common Belief

Non Integrable Systems

$$\rho_A = \rho_{\rm can} = \frac{e^{-\beta H}}{Z}$$

Thermal ensemble only one integral of motion E few info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_A = \rho_{\rm GGE} = \frac{e^{-\sum_m \beta_m I_m}}{Z}$$

Non thermal ensemble all local integrals of motions I_m full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

... based on

theoretical, experimental and numerical outcomes

[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

Common Belief

Non Integrable Systems

$$\rho_A = \rho_{\rm can} = \frac{e^{-\beta H}}{Z}$$

Thermal ensemble only one integral of motion Efew info on the whole Initial state

[Deutsch '91; Srednicki '95]

Integrable Systems

$$\rho_A = \rho_{\rm GGE} = \frac{e^{-\sum_m \beta_m I_m}}{Z}$$

Non thermal ensemble all local integrals of motions I_m full info on the whole Initial state

[Rigol et al '07; Eisert; Cramer...]

... based on

theoretical, experimental and numerical outcomes

[Rigol, Muramatsu, Olshanii; Cazalilla; Calabrese, Cardy; Fioretto, Mussardo; Caux, Mossel...]

Main test: exact solution of the full dynamics (free theories, TFIC, XY...)

2. Light-cone spread

Equal time two point function for fixed separation r

- \blacktriangleright exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t\gtrsim r/2$

Equal time two point function for fixed separation r

- \blacktriangleright exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t\gtrsim r/2$

Physical Interpretation

[Calabrese, Cardy '07]

 $E_{\psi_0}\gg E_{
m GS}$, $|\psi_0
angle$ acts as a source of excitations

- ▶ quasi-particle emitted on scales $E_{\psi_0}^{-1}$ are entangled
- ▶ they move classically with light-cone trajectories and spread
- for $t \lesssim r/2$ causally disconnected regions
- ▶ after a transient $t \gtrsim r/2$ observables freeze-out

Equal time two point function for fixed separation r

- \blacktriangleright exponential decay in time for $t \lesssim r/2$
- \blacktriangleright saturation to t-independent values for $t\gtrsim r/2$

Physical Interpretation

[Calabrese, Cardy '07]

 $E_{\psi_0}\gg E_{
m GS}$, $|\psi_0
angle$ acts as a source of excitations

- ▶ quasi-particle emitted on scales $E_{\psi_0}^{-1}$ are entangled
- ▶ they move classically with light-cone trajectories and spread
- for $t \lesssim r/2$ causally disconnected regions
- after a transient $t \gtrsim r/2$ observables freeze-out

Horizon effect predicts freeze-out of n (>2)-point functions

Study the time evolution of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Study the time evolution of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

Study the time evolution of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state

In the Transverse field Ising chain [solvable but non-trivial as free theories]

Study the time evolution of local observables after a quench [1 & 2-point functions, entanglement entropy ...]

Starting from an initial excited state Let's discuss first this point

In the Transverse field Ising chain [solvable but non-trivial as free theories]

Initial state

In the literature, only focus on ground states of some local hamiltonian as I.S.

Initial state

In the literature, only focus on ground states of some local hamiltonian as I.S.

Why should we focus on excited ones?

- ► They are much more common than ground states
- ► Different behaviour of entanglement entropy in equilibrium:

 $S_{
m GS} \simeq
m Area \ law \qquad versus \qquad S_{
m exc} \simeq
m Volume \ law$

- Look for universal behaviour
- ► Room for new effects

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} h_c = 1 \qquad h_c = 1$$

 $|0\rangle:$ ground state of H(h)

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} h$$

 $|0\rangle$: ground state of H(h)

From interacting spins σ_i to free spinless fermions b_k

$$H(h) = \sum_{k} \epsilon_{h}(k) \left(b_{k}^{\dagger} b_{k} - \frac{1}{2} \right) \qquad \epsilon_{h}^{2}(k) = 1 + h^{2} - 2h \cos \frac{2\pi k}{N}$$

Quenched Transverse field Ising chain

$$H(h) = -\frac{1}{2} \sum_{j=1}^{N} \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right] + \text{PBC} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} \xrightarrow{\langle 0 | \sigma_j^x | 0 \rangle \neq 0} h$$

 $|0\rangle$: ground state of H(h)

From interacting spins σ_i to free spinless fermions b_k

$$H(h) = \sum_{k} \epsilon_h(k) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \qquad \epsilon_h^2(k) = 1 + h^2 - 2h \cos \frac{2\pi k}{N}$$

Interaction quench $h \to h'$

Initial state: $|\psi_0
angle \equiv \prod_k (b_k^\dagger)^{m_k}|0
angle$

- excited state of pre-quenched hamiltonian H(h)
- Z₂-invariant: $\langle \psi_0 | \sigma_j^x | \psi_0 \rangle = 0$
- m_k : fermionic initial occupation number of k-mode

Our results

Local relaxation in the TFIC from excited states

"A" is a block of ℓ contiguous spins

$$|\psi_0(t)\rangle = e^{-iH(h')t}|\psi_0\rangle$$

Local relaxation in the TFIC from excited states

Result: GGE works even for excited states!

$$\rho_{\mathrm{GGE},A} = \rho_A(\infty)$$

Idea:

Free systems \rightarrow Wick's thm \rightarrow just need to prove it for propagators!

exactly solvable dynamics

• ensemble averages
$$ho_{\text{GGE,A}} = rac{e^{-\sum_k \lambda_k n_k}}{Z}$$

 n_k : post-quench conserved fermionic occupation number operators

Local conserved charges from excited states

$$\begin{split} \langle I_n^+ \rangle &= \int_{-\pi}^{+\pi} \frac{dk}{4\pi} \cos(nk) \epsilon_k \left[1 + m_k^S \cos \Delta_k \right] & m_k^S \equiv m_{-k} + m_k - 1 \\ \langle I_n^- \rangle &= -\int_{-\pi}^{+\pi} \frac{dk}{4\pi} \sin[(n+1)k] m_k^A & m_k^A \equiv m_{-k} - m_k \\ & & \\ & & \\ \hline \text{Two classes of IS} \end{split}$$

$$\begin{split} \bullet & m_k^A = 0: & \text{Only } \langle I_n^+ \rangle \neq 0 & \text{(GS belongs to this class!)} \\ \bullet & m_k^A \neq 0: & \text{Both } \langle I_n^+ \rangle \text{ and } \langle I_n^- \rangle \neq 0 \end{split}$$

Result: Doubling of non zero local conservation laws wrt ground state

Local conserved charges from excited states

$$\begin{split} \langle I_n^+ \rangle &= \int_{-\pi}^{+\pi} \frac{dk}{4\pi} \cos(nk) \epsilon_k \left[1 + m_k^S \cos \Delta_k \right] & m_k^S \equiv m_{-k} + m_k - 1 \\ \langle I_n^- \rangle &= -\int_{-\pi}^{+\pi} \frac{dk}{4\pi} \sin[(n+1)k] m_k^A & m_k^A \equiv m_{-k} - m_k \\ & & \\ & & \\ \hline \mathbf{Two \ classes \ of \ IS} \end{split}$$

$$\bullet \ m_k^A = 0: \quad \text{Only } \langle I_n^+ \rangle \neq 0 \quad \text{(GS belongs to this class!)} \\ \bullet \ m_k^A \neq 0: \quad \text{Both } \langle I_n^+ \rangle \text{ and } \langle I_n^- \rangle \neq 0 \end{split}$$

Result: Doubling of non zero local conservation laws wrt ground state

Does the increased number of conservation laws in m_k^A alter the asymptotic time dependence of correlations?

Transverse magnetization

$$m^{z}(t) = \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} m_{k}^{S} \cos \Delta_{k}}_{\text{stationary part}} - i \underbrace{\int_{-\pi}^{\pi} \frac{dk}{4\pi} e^{i\theta_{k}} m_{k}^{S} \sin \Delta_{k} \cos(2\epsilon_{k}t)}_{\text{time-dependent}}$$

Asymptotic behaviour: stationary phase approximation

 $m^{z}(t) \simeq t^{-\frac{3}{2}} + \mathcal{O}(t^{-\frac{2n+1}{2}})$

AS GROUND STATE

m(k) analytic

m(k) non-analytic

$$m^{z}(t) \simeq t^{-1} + \mathcal{O}(t^{-\frac{2n+1}{2}})$$

NOVELTY!

$$ho^{xx}({m \ell},t)\equiv \langle \Psi_0(t)|\sigma^x_n\sigma^x_{{m \ell}+n}|\Psi_0(t)
angle$$

$$m(k) = \frac{k^2}{(2\pi)^2}$$

 $\ell = 60$
 $h = 1/3, \quad h' = 2/3$
 $t_F = \ell/(2v_{\text{max}})$
 $v_{\text{max}} = \min[h, 1]$

$$m(k) = \frac{k^2}{(2\pi)^2}$$

$$\ell = 60$$

$$h = 1/3, \quad h' = 2/3$$

$$t_F = \ell/(2v_{\text{max}})$$

$$v_{\text{max}} = \min[h, 1]$$

Results

 $\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma_n^x \sigma_{\boldsymbol{\ell}+n}^x | \Psi_0(\boldsymbol{t}) \rangle$

Results

Emergent light-cone spreading of correlations (as for GS)

 $\rho^{xx}(\boldsymbol{\ell}, \boldsymbol{t}) \equiv \langle \Psi_0(\boldsymbol{t}) | \sigma_n^x \sigma_{\boldsymbol{\ell}+n}^x | \Psi_0(\boldsymbol{t}) \rangle$

Results

- Emergent light-cone spreading of correlations (as for GS)
- Common behaviour $\forall m_k$ analyzed (stepfunction, linear, quadratic)...

... EXCEPT ONE!

Different behaviour for different $\ell!$

Different behaviour for different $\ell!$

- Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$

- Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$

- Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Different behaviour for different $\ell!$

- Is it related to $\langle I_n^- \rangle \neq 0$?
- ▶ But other $m_k^A \neq 0$ display usual light-cone effect...

Analytical full time evolution of $\rho^{xx}(\ell, t)$

- ▶ Focus on quenches within the ferromagnetic phase $h, h_0 < 1$
- ► Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese '08]
- Extension only to $m_k^A = 0$

Analytical full time evolution of $\rho^{xx}(\ell, t)$

- ▶ Focus on quenches within the ferromagnetic phase $h, h_0 < 1$
- ► Method: multi-dimensional stationary phase [Fagotti, Essler, Calabrese '08]
- Extension only to $m_k^A = 0$

$$\rho_{m_k}^{xx}(\ell,t) \simeq C_{m_k} \exp\left[\ell \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left(1 - 2|\epsilon'_k| \frac{t}{\ell}\right) \ln(|m_k^S|) \theta(\ell - 2|\epsilon'_k|t)\right] \\ \times \exp\left[2t \int_{-\pi}^{\pi} \frac{dk}{2\pi} |\epsilon'_k| \ln[|\cos \Delta_k m_k^S|] \theta(\ell - 2|\epsilon'_k|t)\right] \\ \times \exp\left[\ell \int_{-\pi}^{\pi} \frac{dk}{2\pi} \ln[|\cos \Delta_k m_k^S|] \theta(2|\epsilon'_k|t - \ell)\right]$$

Universal properties:

- $t \ll t_F$, evolution in t does not depend on m_k^S (first two lines)
- $t \gg t_F$, constant in time (third line)
- \blacktriangleright At fixed time, exponential decreasing with ℓ

Entanglement Entropy

Entanglement Entropy

- Light-cone behaviour
- Dependence on m_k^S
- $S_{\ell}/\ell \neq 0$ at t = 0 due to excitations

Conclusions & Outlooks

We have considered quenches from excited states

Validity of GGE

Horizon effect for S_ℓ and ρ_ℓ^{xx}

Still open problems

Non-trivial dependence for m_k^A ?

Excitations in truly interacting models?