

0

CMS Physics

Luca Lista INFN - Napoli

Gr. I, Napoli, 9-1-2014

CMS Physics Achievements

- CMS results have been awarded with a Nobel prize to P. Higgs and F. Englert
 - "for the theoretical discovery [...] which recently was confirmed through the discovery [...] by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

- This is the -so far- the most important of the many results produced by CMS throughout its first years of running
- INFN, including Naples, gave a great contribution to the experiment and to this discovery

Standard Model

- Constraints on PDF from SM measurement can improve the knowledge of Higgs and other processes
- Z+b(b),W+bb,W+c measured: probes of sea quark PDF and background to searches
- Stringent limits set to anomalous couplings from multiboson final states

- Higgs and other measurements would benefit of a better knowledge of gluon PDF
- Precision physics program at LHC is fully part of a wider comprehension of the Standard Model and search for possible deviations

Top physics

- Top-quark mass measurements reached Tevatron precision
 - Complementary mass measurements
 Could further reduce the uncertainty: endpoint spectrum, single top?

CMS Preliminary

CMS 2010 dilepton

JHEP 07 (2011) (L=36 pb'

CMS 2011 dilepton

arXiv:1209.2393 (L=5.0/fb)

arXiv:1209.2319 (L=5.0/fb

CMS 2011 all-jets PAS-TOP-11-017 (L=3.54/fb

CMS combination

Tevatron 2012 combination

up to L= 5.0/fb

CMS 2011 lepton+jets

CMS 2010 lepton+iets

1755 + 46 + 46

173 1+21+27

 $172.5 \pm 0.4 \pm 1.5$

173.5 ± 0.4 ± 1.0

173.5 ± 0.7 ± 1.3 (val. ± stat. ± syst.)

 $173.4 \pm 0.4 \pm 0.9$

 $173.2 \pm 0.6 \pm 0.8$

185 m_{top} [GeV]

(val. ± stat. ± syst.)

(val. ± stat. ± svst.)

(val. ± stat. ± svst.)

(val. ± stat. ± svst.)

(val + stat + syst)

- Differential studies are possible thanks to the large available data sample (very good generator description found so far)
- Access to rare channels permits to probe new physics in the top sector. E.g.: observation of tW (TOP-12-040)
- CMS has better precision compared to ATLAS in most of the cases

CMS combined resul

B Physics

- $B(B_s \rightarrow \mu \mu)$ result competitive with LHCb (BPH-13-004)
 - Combination with LHCb approved (BPH-13-007)
 - Run-II higher luminosity can bring further improvement, but trigger and reconstruction should be adequate
- CMS found a new peaking structures in the J/ $\psi \phi$ mass from B⁺ \rightarrow J/ $\psi \phi$ K⁺ (BPH-11-026) already observed at CDF at slightly different mass
 - More studies are needed to confirm the nature of those structures
- LHCb presented a 3.7 σ angular distribution anomaly in $B \rightarrow K^* \mu \mu$
 - Work in progress in CMS

Higgs

- Most of the results have been published, still "legacy" papers are in progress
- Recent result from ttH with H decaying to leptonic channels, and combination with the other channels. Slight excess w.r.t. SM, but still low sensitivity: $\sigma = (2.5 \pm 1.0) \times \sigma_{SM}$

 Part of the Higgs group program is devoted to improving the property measurements, part to search for non-minimal Higgs bosons (SuSy or other models)

• $H \rightarrow \tau \tau$: 3σ excess (preliminary), now under final approval

Gr. I, Napoli, 9-1-2014

Higgs - Properties

- The properties of a Higgs boson candidate are measured in the $H \rightarrow ZZ \rightarrow 4I$ decay channel, with with I=e, μ .
- The production cross section of the new boson times the branching fraction to four leptons is measured to be 0.93^{+0.26}-0.23 (stat.)^{+0.13}-0.09 (syst.) times that predicted by the standard model.
- Its spin-parity properties are found to be consistent with the expectations for the standard model Higgs boson (pseudoscalar spin-I boson hypotheses are excluded at a 99% CL, spin-2 boson hypotheses are excluded at a 95% CL).

Exotica

- Exotica papers are in general less numerous than in the past
 - Many analyses finalized shortly after the end of run I
- Still some new results show interesting applications of non-trivial analysis techniques, e.g.: search for displaced jet resonances (EXO-12-038)
 - ATLAS studied "out-of-time" jets
- Search for resonances decaying to ZZ (EXO-12-022) and WW (EXO-12-021), interpreted as limits to graviton production cross section × BR to searched final states

SuSy

- Specific SuSy searches address topologies uncovered by other searches with generic topologies
- E.g.: search for final states with b jets using razor variables (SUS-13-004)

CMS Preliminary, 19.3 fb⁻¹, √s = 8 TeV

pp $\rightarrow \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow b\overline{b}\widetilde{\chi}^0$ NLO+NLL exclusion

95% C.L. upper limit on cross section (pb)

10⁻¹

10⁻²

400

(1200 1000 m^{(Sb} (GeV)

600

EObserved ± 1 otheon Expected ± 1 σ_{experime}

800

1000

CMS Preliminary, 19.3 fb⁻¹, vs = 8 TeV

pp $\rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}^0$ NLO+NLL exclusion

1200 1400 m_{gluino} (GeV)

ã

Expected ± 1 σ_{experimen}

SuSy: Higgs as a tool!

- Search for decays with Higgs bosons in the final state (SUS-13-017)
- Several decay modes explored: H→bb, WW, ZZ, ττ

What's next?

- "Legacy" papers should be mostly completed by winter
- It's time to get ready to run II
- Prepare the strategy to analyze the first data:
 - What channels are more promising?
 - What results would be more interesting?
 - Precision measurements (including Higgs properties) and/or searches?
 - Can we approach new channel profiting from signatures we already have analyzed?
- In order to get ready we have to prepare the ingredients:
 - Trigger: different selection (e.g.: isolation applied on leptons) will put constraints on how to study control samples from data
 - Physics objects: PAG need to work closely with POG in order to exploit the best available tools
 - Different background compositions, at higher energy
 - Pile-up conditions
 - Definition of new events selections
 - ••••
- Studies of channels at high energy are also a starting point to explore the scenarios for the phase-II upgrade and for high luminosity LHC

Naples group: data analysis

- 2010: analysis of the very first data
 - $Z \rightarrow \mu \mu$ inclusive cross section
 - Vector Boson Task Force convenership
- 2011:
 - Z and W inclusive cross section paper (CMS top cite)
 - Single-top production: first measurements (\rightarrow PRL)
- 2012:
 - Higgs boson search: $H \rightarrow ZZ \rightarrow IIqq$
 - Single-top longer paper on t channel (\rightarrow JHEP)
 - Single-top convenership
 - National physics coordinator
- 2013:
 - Higgs boson properties: $H \rightarrow ZZ \rightarrow IIII$, via VBF
 - First s-channel single-top measurement
 - Physics validation convener (Francesco)
- 2014:
 - Single-top convenership (Orso)

t channel: cross section

- Inclusive cross section measured at 7 and 8 TeV
- **7 TeV**, 1.17/1.56 fb⁻¹: three analyses combined: NN, BDT and fit to $|\eta_{j'}|$ distribution; exactly one e or μ

 $\begin{array}{l} \sigma_{t\text{-ch.}} = & 67.2 \pm 3.7(\text{stat}) \pm 3.0(\text{syst}) \pm 3.5(\text{th}) \pm 1.5(\text{lumi}) \text{ pb [JHEP12(2012) 035]} \\ \sigma_{t\text{-ch.}} = & 64.6\text{pb} \end{array}$

• 8 TeV, 12.2 fb⁻¹: fit to $|\eta_{i'}|$ distribution in 2jets+1b-tag, signal region from reconstructed top mass. Exactly one μ

 $\sigma_{t-ch} = 80.1 \pm 5.7(stat) \pm 11.0(syst) \pm 4.0(lumi) \text{ pb [TOP-12-011]} \sigma_{t-ch} = 87.6 \text{ pb}$

t channel: distributions

- The t-channel data sample is large enough to start studying distributions
 - $\circ \rightarrow$ differential cross sections
- Signal can be enhanced by requiring large forward jet pseudorapidity, e.g.: $|\eta_{i'}| > 2.0$

^[†] $\theta *_l =$ angle between lepton in W rest frame and the W in top rest frame.

Top antitop, separately

• Top and antitop cross sections can be measured separately, based on the lepton charge [TOP-12-038]

 $u(\bar{d})$

 W^+

 $d(\bar{u})$

- Their ratio and total cross section can be determined, alternatively
- Slightly different selection with both e and μ , to optimize uncertainty on the ratio; electron channel added to the analysis
- $\sigma_{top} = 49.9 \pm 1.9(stat) \pm 8.9(syst) \text{ pb}$
- $\sigma_{anti-top}$ = 28.3 ± 2.4(stat) ± 4.9(syst) pb

Top-antitop ratio

- Top-antitop ratio $R_{t/t}$ probes the different u and d content of the proton
- Potentially sensitive to PDF
- $R_{t/t} = 1.76 \pm 0.15(stat) \pm 0.22(syst)$
- Uncertainty is still large to discriminate PDF models
- Combination with ATLAS should be pursued, but measurements are available at different √s
- Can we achieve a better sensitivity combining some observables at √s = 7 TeV and 8 TeV (and eventually at 14 TeV)?
- ..or it is a job for PDF global fits?

s channel

- Most unfavorable cross section and signal/background
- Signal determined using a multivariate approach to increase sensitivity (BDT, 10/11 variables for $\mu/e)$
- Data/simulation agreement was checked for each variable

s channel results

- First CMS result approved by PASCOS (8 TeV, 19.3 fb⁻¹)
 - Upper limit: σ_{s-ch.} < 2.1 × SM cross section [TOP-13-009] exp. w/ signal exp. w/o signal

$\sigma_{s-{\rm ch.}} < 12.4$	(18.4,	$10.5) {\rm \ pb}$	muon channel
$\sigma_{s-{\rm ch.}} < 14.7$	(23.2,	15.4) pb	electron channel
$\sigma_{s-{\rm ch.}} < 11.5$	(17.0,	$9.0) \mathrm{~pb}$	combined

- Sensitivity still limited ($0.9\sigma \exp, 0.7\sigma obs$), mainly by theory systematics
- Keeping under control uncertainties like renorm./factor scale (83%!!) would reduce dramatically the uncertainty (IDPLHCWG)
- Cross section determined anyway from fit to data yield ($\sigma_{s-ch.}^{SM} = 5.6$ pb):

- The analysis at 7 TeV is interesting: the better S/B ratio may compensate the smaller data sample
 - ATLAS limit available at 7 TeV, 0.70 fb⁻¹: $\sigma_{s-ch.} < 26.5pb = 5.7 \times SM$ cross section [ATLAS-CONF-2011-118]

Cross section summary

- t channel and tW measured at 7 and 8 TeV
 - t channel reached 16% precision, 14% if combined with ATLAS
- s channel, upper limit at 8 TeV
 - Fit from data allows to determine the cross section, yet with poor precision so far

Differential measurements and top polarization

SM: top ~100% polarized along light quark

Wtb coupling structure encoded in kinematics of decay products (SM: V-A coupling structure)

- Selection very similar to cross section measurement
- Extract distribution of angle between light quark & lepton in the top-quark rest frame: $\vec{x} = \vec{x}$

$$\cos \theta^* = \frac{p_\ell^* \cdot p_{\ell \mathbf{q}}^*}{|\vec{p_\ell^*}| \cdot |\vec{p_{\ell \mathbf{q}}^*}|}$$

• Determine the asymmetry

И

g **9999**

Gr. I, Napoli, 9-1-2014

$$A = \frac{N(\cos\theta^* > 0) - N(\cos\theta^* < 0)}{N(\cos\theta^* > 0) + N(\cos\theta^* < 0)}$$

• Probe coupling structure

Differential studies

- Regularized unfolding of $\cos\theta^*$ distribution removes experimental effects
- Top spin asymmetry: $A_i = 0.41 \pm 0.06(\text{stat}) \pm 0.16(\text{syst})$
- Top polarization: $P_1 = 0.82 \pm 0.12(\text{stat}) \pm 0.32(\text{syst})$

 $A_{l} \equiv \frac{1}{2} \cdot P_{t} \alpha_{l} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$ $\alpha_{l} = I \text{ in the SM, modified in case of tWb anomalous coupling}$

• First of several possible differential cross-section measurements

W helicity

• W helicity from top decay studied from $\cos\theta_l^{[\dagger]}$ distribution [$^{\dagger]}\theta_l^*$ = angle between lepton in W rest frame and the W in top rest frame.

$$\rho(\cos\theta_{\ell}^{*}) = \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2} \frac{*}{\ell} F_{0}$$

- Single-top selection provides a sample enriched in single-top event, where the tt~ fraction is anyway sizable, in particular at 8 TeV
- Orthogonal selection w.r.t.W helicity analysis in tt~, suitable for a possible combination

W helicity

- Preliminary result with **7+8 TeV** (1.14fb⁻¹ + 5.3fb⁻¹, μ only) [TOP-12-020]:
 - $F_L = 0.293 \pm 0.069(stat) \pm 0.030(syst)$
 - $F_0 = 0.713 \pm 0.114(stat) \pm 0.023(syst)$
 - $F_R = -0.006 \pm 0.057(stat) \pm 0.027(syst)$
- Limits set on anomalous tWb couplings
 - $\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-} \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}g_L \mathcal{L} + g_R \mathcal{L} + g_R \mathcal{L} + H.C,$
- Anomalous coupling at production vertex not taken into account explicitly in the analysis method, but effects on the measurement determined with dedicated simulated samples: null (V_R =0) or negligible bias, if V_L = 1 and $|V_R|^2 < 0.3$ (D0 limit).

INFN

Naples group

1 Buontempo Salvatore	Dipendente	Dirigente di Ricerca	80%
2 Cavallo Nicola	Associato	Prof. Ordinario	100%
3 De Nardo Guglielmo	<mark>Associato</mark>	Ricercatore	20%
4 Di Guida Salvatore	Associato	Dottorando	100%
5 Dogangun Oktay	Associato	Dottorando	100%
6 Esposito Marco	Associato	Dottorando	100%
7 Fabozzi Francesco	Associato	Ricercatore	100%
8 Iorio Alberto Orso Maria	Associato	Assignista di ricerca	100%
9 Lista Luca	Dipendente	Primo Ricercatore	95%
10 Meola Sabino	Associato	Ricercatore	100%
11 Merola Mario	Associato	Assegnista	100%
12 Paolucci Pierluigi	Dipendente	Primo Ricercatore	100%
13 Sciacca Crisostomo	Associato	Prof. Ordinario	0%
Totale		13	FTE: 11.0

Francesco Tramontano (researcher, type "A") recently joined CMS as theorist affiliated

2014 Budget

Jla	Capitolo	R	liunione	Note alla	Rich.	Rich.	Assegn	Assegn	Assegn.	Commento alla
				richiesta		SJ		SJ	Dot.	assegnazione
IA	MISS	Assegnazioni		RPC: project manager: 6mu x 3.95k€/mu	24.0	0.0	94.0			include tutte le voci
		Assegnazioni		RPC: technical coordinator: 4mu x 3.95k€/mu	16.0	0.0	0.0			
		Assegnazioni		RPC: resp. supermoduli: 2mu x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		RPC: resp. database: 2mu x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		PPD: liason con gruppi di analisi: 2k€ x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		Physics/TOP: single top group convener: 2mu x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		Coordinatore italiano della fisica: 2mu x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		RPC link board: missioni al CERN di tecnici: 12mu x 3.95k€/mu	47.5	5 0.0	0.0			
		Assegnazioni		RPC: sistema di potenza e riparazioni, missioni di tecnici al CERN: 2mu x 3.95k€/mu	8.0	0.0	0.0			
		Assegnazioni		RPC: RE4, sistema di potenza: missioni al CERN di tecnici: 4mu x 3.95k€/mu	16.0	0.0	0.0			
		Assegnazioni		RPC: turni al CERN: 7mu x 3.95k€/mu	27.5	5 0.0	0.0			
		Assegnazioni		Metabolismo: 11 FTE x 3.95k€/FTE	43.5	5 0.0	0.0			
		Totale MISS			222.5	0.0	94.0	0.0	0	.0
	CON	Assegnazioni		Metabolismo: 11 FTE x 1.5k€/FTE	16.5	5 0.0	14.0			
		Totale CON			16.5	0.0	14.0	0.0	0	.0
	APP	Assegnazioni		4 distributori HV per il sistema presente: totale 4180€	4.0	0.0	9 4.0			fuori tetto
		Assegnazioni		Connettori Fibre LB: totale di 1500€	1.5	5 0.0) 1.5			fuori tetto
		Assegnazioni		Kit per il montaggio delle LB (custom): 2500€	2.5	5 0.0	2.5			fuori tetto
		Assegnazioni		Set di componenti spare per il sistema LB (spartan III e memorie associative): 3150€	3.0	0.0	3.0			fuori tetto
		Assegnazioni		fibre ottiche per linkboard RPC	10.0) 0.0	0.0			Nuova richiesta anticipata 2013
		Totale APP			21.0	0.0	11.0	0.0	0.	.0
	JURVIZI	Asseynazioni			4.0	. 0.0	, 0.0			
		Totale SERVIZI			4.0	0.0	0.0	0.0	0	.0

Gr. I, Napoli, 9-1-2014

Relevant cuts applied: being re-discussed within the Italian community

Students and postdocs

- The number of young physicists is decreasing in the last years, after a positive trend
 - Positive sign: two bachelor theses ongoing

Naples: analysis next years

- Higgs analysis moving to and end
- Consolidating single-top analysis
- Possibly investigate new physics channels with single-to signature
- The strategy will be defined in a forthcoming group meeting being scheduled shortly
- Contact with university is vital for the future of the group