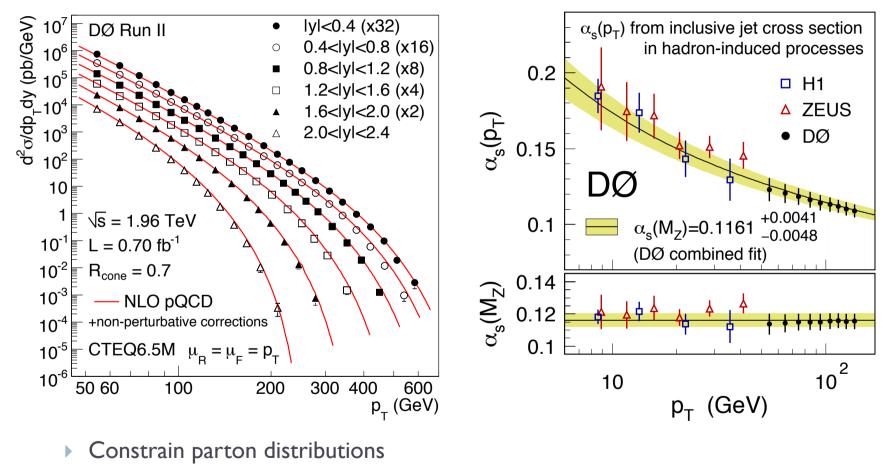
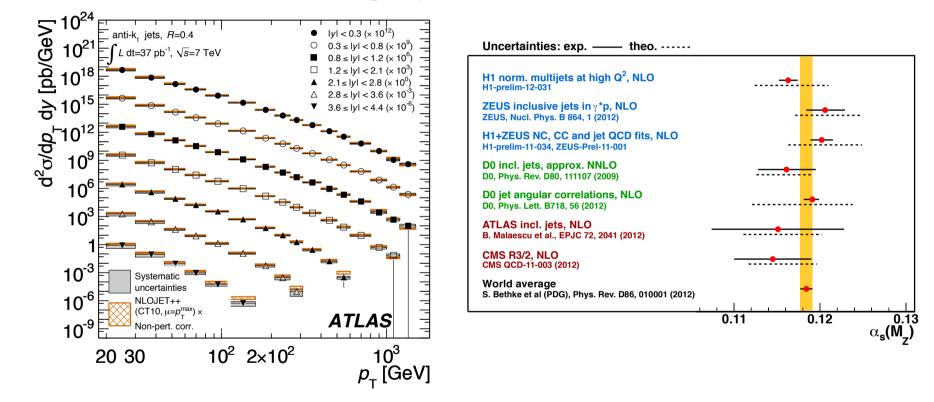

Precision physics with jet observables Seminar Roma I (La Sapienza), 27.1.2014

Thomas Gehrmann, Universität Zürich


Benchmark processes at colliders

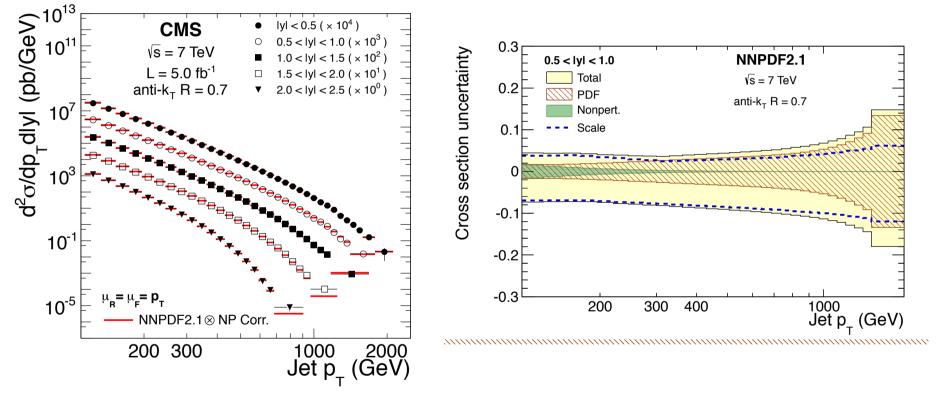
- Large production rates for Standard Model processes
 - ▶ jets
 - top quark pairs
 - vector bosons
- Allow precision measurements
 - masses

- couplings
- parton distributions
- Require precise theory: NNLO

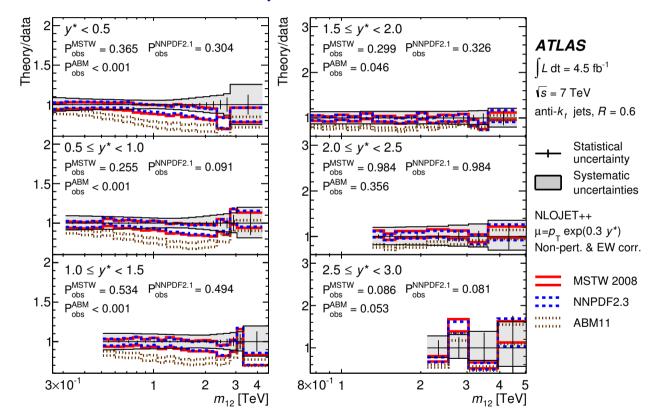


Precision observable at the Tevatron

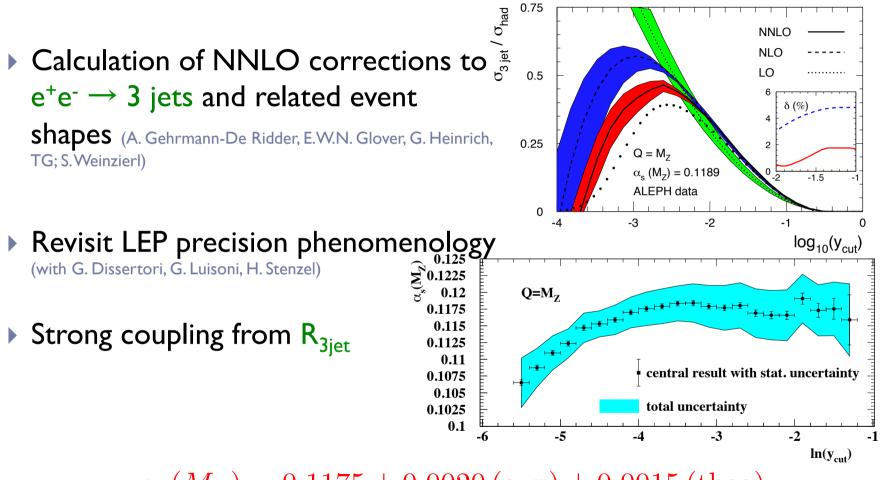
Measure strong coupling constant


ATLAS 2010 results: single jet inclusive

- On track to a multiple-differential high-precision measurement
- Limiting factor in interpretation will be theory accuracy

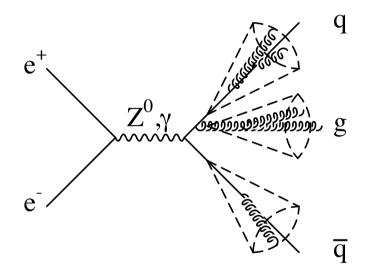

3

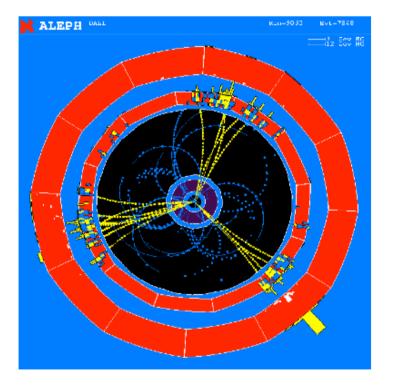
CMS 2011 results: single jet inclusive


- uncertainty on NLO prediction comparable to spread from partons
- need improved theory for precise extraction of parton distributions from jets

ATLAS 2011 results: dijet mass distribution

Dijet production: differential probe of parton distributions

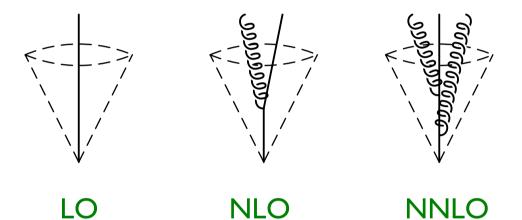

NNLO corrections to $e^+e^- \rightarrow 3$ jets



 $\alpha_s(M_Z) = 0.1175 \pm 0.0020 \,(\text{exp}) \pm 0.0015 \,(\text{theo})$

6

Jets: $e^+e^- \rightarrow 3$ jets



Theory

Experiment

Jets in perturbative QCD

 Partons are combined into jets with the same jet algorithm as in experiment

- No algorithm dependence at leading order
- Theoretical description more accurate with increasing order
- Current status: at most three partons in one jet

Infrared safety

- Formal requirement on QCD observables (jets, event shapes) defined through final state momenta
 - Value of observable should not change if a soft particle is emitted or a particle splits into two collinear particles (Sterman-Weinberg criteria)
 - Ensures cancellation of infrared divergences at each order in perturbative QCD (KLN theorem)

Observables that fulfil these criteria are called infrared-safe

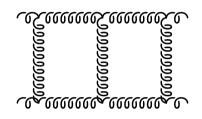
Soft $(E_{n+1} \rightarrow 0): O_{n+1}(p_1,...,p_n,p_{n+1}) \rightarrow O_n(p_1,...,p_n)$ Collinear $(p_n // p_{n+1}): O_{n+1}(p_1,...,p_n,p_{n+1}) \rightarrow O_n(p_1,...,p_n+p_{n+1})$

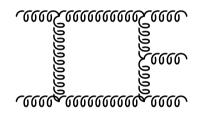
Ingredients to jet production at NNLO

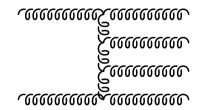
Two-loop matrix elements

(C.Anastasiou, E.W.N. Glover, C. Oleari, M. Tejeida-Yeomans; Z. Bern, L. Dixon, A. De Freitas)

Explicit infrared poles from loop integrals


One-loop matrix elements


(Z. Kunszt, A. Signer, Z. Trocsanyi)


- Explicit infrared poles from loop integral
- Implicit infrared poles from real radiation

Tree-level matrix elements

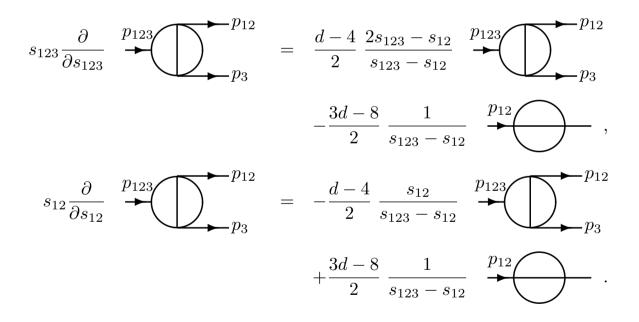
Implicit infrared poles from real radiation

Two-loop matrix elements

- Generation of diagrams (QGRAF: P. Noguiera, FORM: J. Vermaseren)
 - Expressed in terms of two-loop Feynman integrals

Reduction to master integrals

Integration-by-parts identities


 $\int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \frac{\partial}{\partial a^{\mu}} \left[b^{\mu} f(k,l,p_i) \right] = 0 \quad \text{with } a^{\mu} = k^{\mu}, l^{\mu}; b^{\mu} = k^{\mu}, l^{\mu}, p_i^{\mu}$

- Complemented by Lorentz invariance and symmetry
- Solution based on lexicographic ordering (S. Laporta)
 - AIR (C.Anastasiou, A. Lazopoulos)
 - FIRE (A. Smirnov)
 - Reduze (A. von Manteuffel, C. Studerus)

Two-loop matrix elements

Master integrals from differential equations

- Differentiate integrand with respect to masses and momenta
- Apply integration-by-parts identities

Integrate differential equations and match boundary

Two-loop matrix elements for jet production

• Analytic $2 \rightarrow 2$ results for processes with jets

- Di-jet production (C.Anastasiou, E.W.N. Glover, C. Oleari, M. Tejeida-Yeomans; Z. Bern, L. Dixon, A. De Freitas)
- Vector-boson-plus-jet production

 (L. Garland, E.W.N. Glover, A. Koukoutsakis, E. Remiddi, L. Tancredi, E. Weihs, TG)
- Higgs-boson-plus-jet production (E.W.N. Glover, M. Jaquier, A. Koukoutsakis, TG)
- Top quark pair production
 - Numerical representation (P. Bärnreuther, M. Czakon)
 - Analytical work ongoing (R.Bonciani, A.Ferroglia, C.Studerus, A.von Manteuffel, TG)
- Next frontier: automation and $2 \rightarrow 3$
 - Unitarity-based methods (P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro)
 - Classification of integral basis (H. Johansson, D. Kosower, K. Larsen)

Real radiation at NNLO: factorization

Single unresolved radiation at one loop

- One-loop correction to collinear splitting factors (Z. Bern, V. Del Duca, W. Kilgore, C. Schmidt)
- One-loop correction to soft eikonal factor (S. Catani, M. Grazzini)
- Double unresolved radiation factors at tree level (J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini)
 - Double soft
 - Soft/Collinear
 - Triple collinear
 - Double single collinear

Require method to extract singular contributions

Real radiation at NNLO: methods

Sector decomposition

(T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello)

- ▶ pp → H, pp → V, including decays (C.Anastasiou, K. Melnikov, F. Petriello; S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)
- ▶ **q**_T-subtraction (S. Catani, M. Grazzini)
 - ▶ $pp \rightarrow H, pp \rightarrow V, pp \rightarrow \gamma \gamma, pp \rightarrow VH$ (S. Catani, L. Cieri, D. de Florian, G. Ferrera M. Grazzini, F. Tramontano)

Sector-improved subtraction schemes

(M. Czakon; R. Boughezal, K. Melinkov, F. Petriello)

▶ $pp \rightarrow t\bar{t}$ (M. Czakon, P. Fiedler, A. Mitov)

- ▶ $pp \rightarrow H+j$ (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
- Antenna subtraction (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - ► $e^+e^- \rightarrow 3j$ (A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

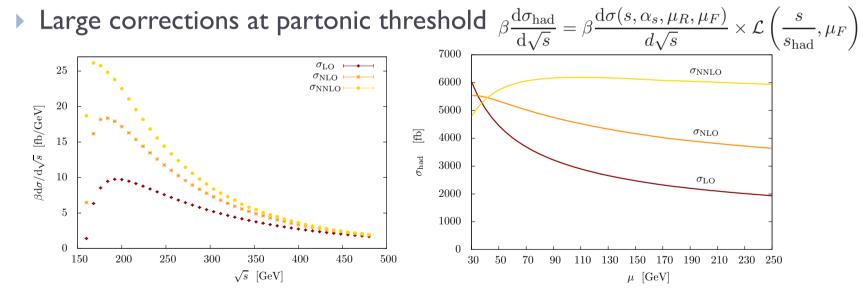
▶ $pp \rightarrow 2j$ (A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)

NNLO results on top quark pair production

Large production cross section at the LHC

- Expected experimental error of ~5% on total cross section
- NLO+NLL predictions yield uncertainty of ~10%
- NNLO calculation of total cross section completed recently (M. Czakon, P. Fiedler, A. Mitov)

 Theory (scales + pdf)


 Theory (scales)
 - Based on sector-improved subtraction
 - Numerical cancellation of infrared poles
 - Differential distributions in progress

16

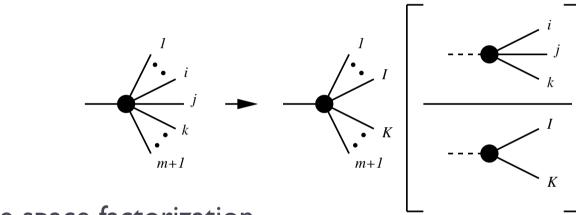
NNLO results on Higgs+jet production

- First results of H+jet total cross section (gluons only) (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
 - Based on sector-improved subtraction
 - Numerical cancellation of infrared singularities
- Cross section multiplied by gluon luminosity

Stabilization of scale dependence for total cross section

NNLO Infrared Subtraction

Structure of NNLO cross section


$$d\sigma_{NNLO} = \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^{R} - \mathrm{d}\sigma_{NNLO}^{S} \right) + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{MF,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^{S} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{MF,2}$$

- ▶ Real and virtual contributions: $d\sigma_{NNLO}^{R}$, $d\sigma_{NNLO}^{V,1}$, $d\sigma_{NNLO}^{V,2}$,
- Subtraction term for double real radiation: $d\sigma^S_{NNLO}$
- Subtraction term for one-loop single real radiation: $d\sigma_{NNLO}^{VS,1}$
- Mass factorization terms: $d\sigma_{NNLO}^{MF,1}, d\sigma_{NNLO}^{MF,2}$
- Each line finite and free of poles
 - \rightarrow numerical implementation

Antenna subtraction

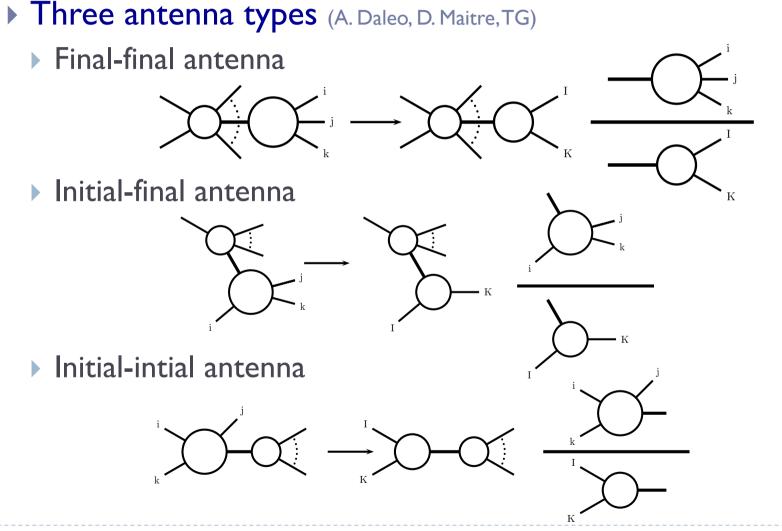
Subtraction terms constructed from antenna functions

> Antenna function contains all emission between two partons

Phase space factorization

 $d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) = d\Phi_m(p_1, \dots, \tilde{p}_I, \tilde{p}_K, \dots, p_{m+1}; q) \cdot d\Phi_{X_{ijk}}(p_i, p_j, p_k; \tilde{p}_I + \tilde{p}_K)$

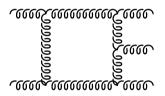
Integrated subtraction term

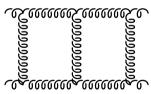

$$\mathcal{X}_{ijk} = \int d\Phi_{X_{ijk}} X_{ijk}$$

Antenna functions

Colour-ordered pair of hard partons (radiators)

- Hard quark-antiquark pair
- Hard quark-gluon pair
- Hard gluon-gluon pair
- ▶ NLO (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover)
 - Three-parton antenna: one unresolved parton
- NNLO (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - Four-parton antenna: two unresolved partons
 - Three-parton antenna at one loop
 - Products of NLO antenna functions
 - Soft antenna function

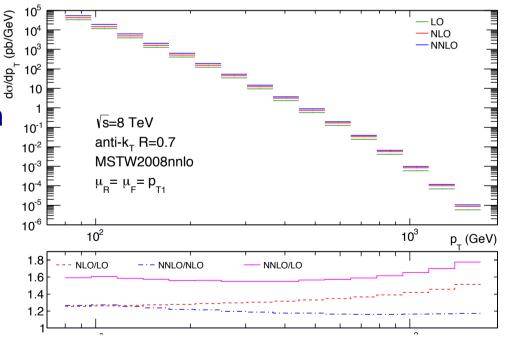

Antenna subtraction: incoming hadrons



Integrated NNLO antenna functions

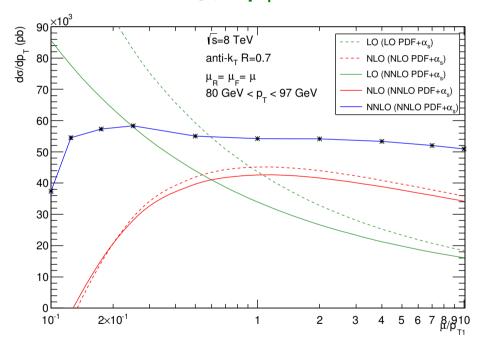
- Analytical integration over unresolved part of phase space only
 - phase space integrals reduced to masters (C.Anastasiou, K. Melnikov)
 - Final-final: $q \rightarrow k_1 + k_2 + k_3(+k_4)$, one scale: q²
 - $\blacktriangleright \ I \rightarrow 4 \text{ tree level}$
 - $I \rightarrow 3$ one loop
 - ▶ Initial-final: $q + p_1 \rightarrow k_1 + k_2(+k_3)$, two scales: q², x (A. Daleo, A. Gehrmann-De Ridder, G. Luisoni, TG)
 - ▶ 2 \rightarrow 3 tree level
 - ▶ $2 \rightarrow 2$ one loop
 - Initial-initial: $p_1 + p_2 \rightarrow q + k_1(+k_2)$, three scales: q^2 , x_1 , x_2 (R. Boughezal, A. Gehrmann-De Ridder, M. Ritzmann, TG)
 - ▶ 2 \rightarrow 3 tree level
 - ▶ 2 \rightarrow 2 one loop

- Leading colour gluons-only as proof of concept (A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)
 - Double real radiation
 - Subtraction terms constructed and implemented
 - Azimuthal correlations from gluon splitting
 - Single real radiation at one loop
 - Subtraction terms constructed and implemented
 - Interplay of antenna functions and mass factorization
 - Two-loop contributions
 - Added integrated subtraction terms from above
 - Observe analytic cancellation of all infrared poles
- All implemented in parton-level event generator

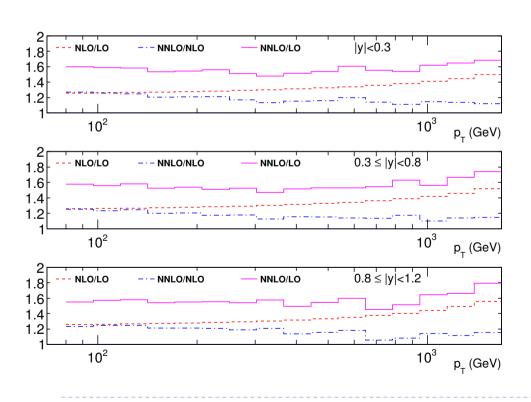


$pp \rightarrow 2jets at NNLO$

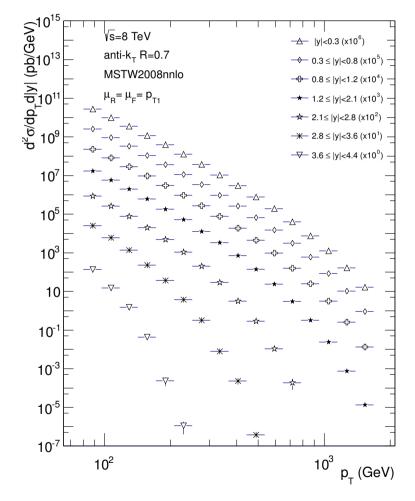
First results at NNLO available


- $gg \rightarrow gg$ subprocess
 - (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)
- Developed a new parton-level event generator NNLOJET
- using antenna subtraction
 - analytic cancellation of infrared poles
- Inclusive jet p_T distribution
 - NNLO/NLO differential K-factor flat over the whole p_T range

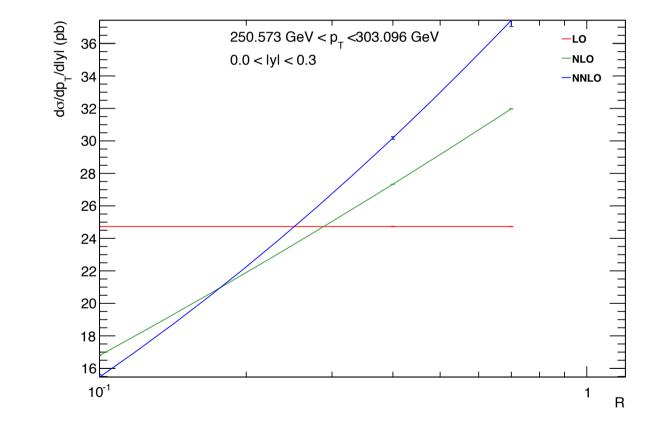
$pp \rightarrow 2jets at NNLO$

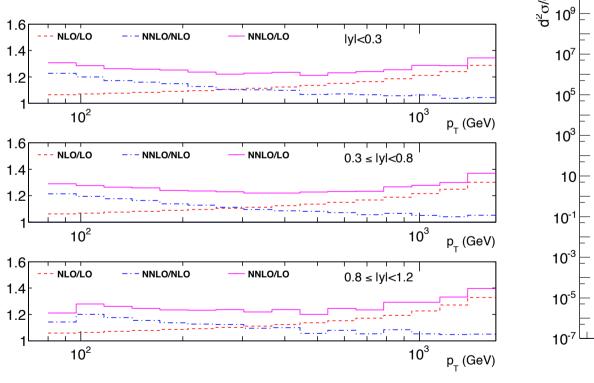

Inclusive jet p_T distribution: scale dependence (gluons only) (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)

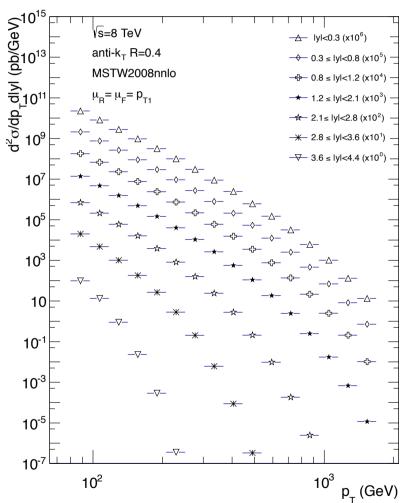
Dynamical scale choice: leading jet PT



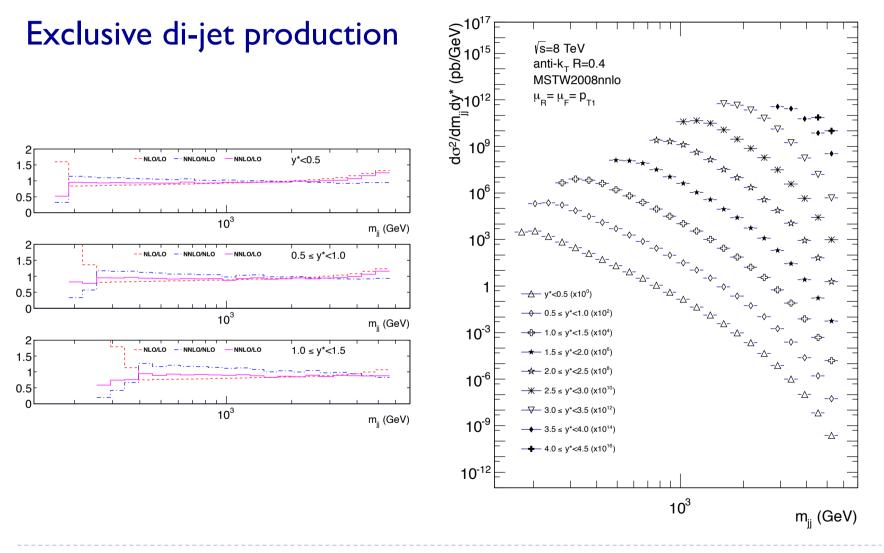
Stabilization at NNLO


Inclusive jet production: double differential distributions


R = 0.7



Single-jet inclusive: jet size dependence in anti- k_T algorithm


Inclusive jet production: double differential distributions

28

R = 0.4

29

Outlook: next steps

• Current status of $pp \rightarrow 2j$: gluons only

- Serves as proof-of-principle
- Implementation of all parton-level processes at NNLO (J. Currie, E.W.N. Glover, S. Wells)
- Towards automated generation of subtraction terms
 - Systematic understanding of infrared cancellations (J. Currie, E.W.N. Glover)
- Other processes of similar complexity: $2 \rightarrow 2$
 - ▶ pp \rightarrow H+j
 - ▶ $pp \rightarrow V+j$

Higher-multiplicity processes: two-loop virtuals needed

Conclusions

NNLO corrections to precision observables at LHC

- Various methods have been applied successfully
- Healthy competition between groups

• Current frontier: $2 \rightarrow 2$ QCD processes

- Top quark pairs
- Higgs-plus-jet cross section (gluons only)
- Single-jet inclusive and di-jet cross sections (gluons only)

Precision phenomenology with jet observables starting

- Measurements of coupling constants
- Determination of parton distributions