

VFAT3 Status

F. Loddo INFN-Bari

Meeting CMS-GEM Italia

VFAT3 block diagram

Detector studies & timing resolution (ULB)

Timing resolution determined by detector.

Fast shaping (as with VFAT2) give good timing resolution (<6ns) but bad signal to noise due to ballistic deficit.

Slower shaping times give better S/N but worse timing resolution due to time walk.

VFAT3 analog discriminator would use CFD or TOT to correct time walk and recover timing resolution.

Simulations showed that both methods are suitable for improving the timing resolution when Tpeak > 25 ns

• Time Over Thresholds method takes longer to compute and requires LUT

• Constant Fraction Timing was chosen for VFAT3

T.Maerschalk, ULB

Front-end (F. Guilloux, CEA Saclay)

Parameter	FE (VFAT3/GdSP)	unit	Remarks
Input capacitance *	5 - 10 - 30 - 60 - 80	рF	Simulation cases
Shaper peaking times	25 - 50 - 75 - 100 - 200 -	ns	programmable
	400		
Shaper order **	3rd order		
Input Leakage current	10		
compensation	10	11/5	
Sensitivity ***	From 1.25 to 50	mV/fC	programmable
Polarity	dual		
Dynamic range	200 (400 for dimuon)	fC	
Linearity Error : small charges	<	%	up to 100 fC
Linearity Error : high charges	<5	%	up to 200 fC
Power consumption	<2	mW/chan.	•
Power supply voltage	1.5	V	
Noise	1100	e-	@ Tpeak = 100 ns
			@ 2 mW/chan
			@ Cin = 30pF
Technology	IBM 130nm		

Meeting CMS-GEM Italia

Front-end simulation cases (F. Guilloux, CEA Saclay)

Case 1: VFAT2 mode (Tp = 25 ns)

Detect. cap.	Noise (ENC)	Tpeak (ns)	Gain (mV/fC)	
10 pF	560 e-	23.5	14.5	
30 pF	1085 e-	26.7	14.1	
ENC slope	26 e-/pF	3.2	-0.4	Absolute variation
ENCo	298 e-	+13.6%	-2.8%	Relative variation

Case 2: TPC/GEM mode (Tp = 75 ns)

Detect. cap.	Noise (ENC)	Tpeak (ns)	Gain (mV/fC)	
10 pF	668 e-	77.9	9.78	
30 pF	898 e-	78.4	9.72	
ENC slope	12 e-/pF	0.5	-0.06	Absolute variation
ENC0	553 e-	+0.6%	-0.6%	Relative variation

Case 2: TPC mode (Tp = 50 ns)

Detect. cap.	Noise (ENC)	Tpeak (ns)	Gain (mV/fC)	
10 pF	704 e-	54.2	9.79	
30 pF	999 e-	55.6	9.71	
ENC slope	15 e-/pF	1.4	-0.08	Absolute variation
ENCo	556 e-	+2.6%	-0.8%	Relative variation

Case 2: TPC/GEM mode (Tp = 100 ns)

Detect. cap.	Noise (ENC)	Tpeak (ns)	Gain (mV/fC)	
10 pF	641 e-	107.7	9.86	
30 pF	905 e-	108.3	9.81	
ENC slope	13 e-/pF	0.6	-0.05	Absolute variation
ENC0	509 e-	+0.6%	-0.5%	Relative variation

5

Calibration test pulsing

2 options:

Step voltage – series capacitor (delta-like current pulse)

- •Programmable amplitude (-2fC to 63 fC and +2fC to -64 fC)
- •Programmable polarity
- •Programmable phase, steps of 3.125ns (i.e. 25ns / 8)
- •Single channel/More channels at the same time (reduced accuracy)
- Internal/external test pulse

Current pulse (DC-coupled to preamp)

- •Programmable amplitude (-64 fC to 64 fC)
- •Programmable polarity
- •Programmable phase, steps of 3.125ns (i.e. 25ns / 8)
- •<u>Programmable pulse duration</u>, 1,2,3,4 clock periods
- •Single channel
- •Pile-up, ballistic deficit studies

- All the bias currents/voltages will be remotely controlled
 → Internal 8-bit DACs
- All the bias currents/voltages will be remotely monitored
 → Internal ADC
 ↑
- Internal temperature sensor

8-bit Current DAC

Thermometer coded: 255 "identical" unit current sources connected to output node through switches controlled by a binary-to-thermometer decoder

8-bit Current DAC

Creation of a variable threshold tracking the signal always at a certain fraction of its amplitude

 $V_{OUT}(t) = V_{IN}(t - T_d) - f * V_{IN}(t)$

The output bipolar signal has a zero crossing time T_0 depending only on network parameters (T_d , f)

T_d > (1-f) * T_p TRUE CONSTANT FRACTION TIMING TCF T_d < (1-f) * T_p AMPLITUDE AND RISE TIME COMPENSATED TIMING ARC

Shaping network

Main Advantage :

The fully differential structure provides very good rejection of common mode noise injected in the substrate by the switching digital logic

S. Garbolino, S. Martoiu and A. Rivetti

Implementantion of Constant-Fraction-Discriminators (CFD) in Sub-micron CMOS Technologies 2011 IEEE Nuclear Science Symposium Conference Record

Shaping network

ee le le ree 00 10 101 **@ @** 004 **O**K 00 (C) (C) PΤ $\mathbf{p} \otimes \mathbf{q}$ P P b ₫ 6 6 004 Ъđ 000 $\diamond \phi$ 2 (🔘 (0 \odot ത്രന

 $900x76\ \mu m^2$

• Selectable time constant, to optimize S/N \rightarrow Jitter according to Tpeak

Expressions

- Diff_OUT_mod<0> - Diff_OUT_mod<1> - Diff_OUT_mod<2> - Diff_OUT_mod<3>
- Diff_OUT_mod<4>

T _p [ns]	Crossing Time T ₀ [ns]	Delay Time T _d [ns]	Fraction Factor	ΔT ₀ [ns] (10 ÷ 1000 mV)
25	24.75	15	0.393	0.07
50	49.77	29.07	0.416	0.07
75	75.12	43.41	0.422	0.14
100	100.45	57.82	0.424	0.1

Slow control block diagram (G. De Robertis)

- Large programmable register bank with read/write access with hardwired default value
- IP-bus communication protocol
- Delivered through e-links and E-port, with backup SPI interface for test purpose

Variable Latency Data Path

- Full granularity via e-port
- Data are read upon LV1A arrival
- SRAMs size according to LV1A max. latency (3.2 us \rightarrow 20 us) and rate specification
- Data are transmitted with timestamp to identify the BX
- Data Types:
 - 1. Lossless
 - 2. SPZS (Sequential Partition Zero Suppression): zero suppression, packet size depends on the number of hits, highest transmission rate, but in case of high occupancy some losses may occur

Fixed Latency Trigger Path

- Fast hit information synchronous with LHC 40 MHz clock (does not contain time stamp)
- 8 SLVS output pairs @ 320 MHz → 64 bits/BX

• Programmability:

- 1. Fast OR: Granularity = 2 channels (or 4 channels)
- 2. SPZS (Sequential Partition Zero Suppression): Fully granularity (in case of high occupancy some losses may occur)

- The design of the Front-End, CBM and CFD is almost done
- On Feb.2014 the 1st prototype (namely **CFE**) will be submitted to foundry
- It will house only the analog blocks (8 channels + 4 test channels) and a simple slow control interface, in order to check the amplifier (analog outputs) and CFD performance
- Soon after, the design of the first 128-channel VFAT3 will start

CFE floorplans