

GEM Simulation for the CMS upgrade

"Meeting CMS-GEM Italia" 22/01/2014 Bari

<u>Cesare Calabria</u>, Anna Colaleo, Raffaella Radogna, Rosamaria Venditti Università & INFN Bari

<u>Outline</u>

- CMS Muon upgrade scenario
- Status of the simulation for GE1/1, GE2/1 and ME0
 - Geometries
 - Background studies
 - Trigger
 - Realistic Digitization
 - "Local" reconstruction studies
 - "Global" reconstruction studies

Muon Upgrade Scenario

<u>GE1/1</u>

Present and final geometry

Even

1

2

3

Odd

ME1/16

MEI.

Long

Short

Previous

LAYOUT

- Two 10° triple-GEM chambers to form a "superchamber"
- 144 total chambers (36 super chambers in one station per endcap)
- Each chamber is segmented into different columns and η region
 - Current geometry: 8 eta partitions covering 1.64 < $|\eta| < 2.12$

Final geometry:

- Short super chambers extend to $1.6 < |\eta| < 2.2$ (due to the steel brackets):
 - 3 columns and 8 η-partitions with
 384 strips per η-partition
- Long super chambers extend to $1.5 < |\eta| < 2.2$: Cesare Calabria - Meeting CMS-GEM Italia
 - 3 columns and 8-10 η-partitions
 (under studies) with 384 strips per η-partition

Radiation background in the Muon system

- Expected background rates are an important consideration in the planning of the Muon system upgrade
- Rates vs. detector rate capability determine the choice of the most suited detector technologies
- Can drive the choice of the optimal detector coverage
 - Can also allow to determine the necessary shielding in front of the Muon system
 - Estimated through simulation or extrapolation

Background simulation

- First step: Particle fluxes
 - Simulation Tool: FLUKA
- CMS geometry:
 - 2019 scenario for GE1/1 Current geometry, not including any of the upgrade systems (Full study presented)
 - 2023 scenario including all upgrade systems (ME0, GE1/1, GE2/1, RE3, RE4) Need to have a realistic calorimetry upgrade description
- Second step: Sensitivity
 - Simulation tool: GEANT
 - Precise detector description in GEANT4 for the detector response to the photons and neutrons Cesare Calabria - Meeting CMS-GEM Italia

Flux predictions: Fluka

- According to FLUKA after neutrons and photons the next most important contribution coming from electrons and muons in that order (sensitivity ~1)
- Only small percentage of them will generate a signal in the detector
- Since the sensitivities are energy dependent, need fluxes also as a function of energy
- Missing YE4 shielding and endcap calorimeter not simulated: Expected rates could be overestimated Flux of particles crossing the GE1/1 region

Neutron and photon flux in each eta partition

- Flux evaluate in each of the 8 eta-partitions.
- Last step is to combine this results with the sensitivities (as a function of energy) then integrate to get a total "effective" flux for each partition
- Left: example for the neutron flux vs. energy

Sensitivity with Geant4: Neutrons

- Precise, energy-dependent, detector sensitivities to each particle type is needed
- Description of triple-GEM detector and gas mixture in GEANT4
- An event is considered as sensitive if there is a deposition of energy (Drift Gap) of 5 times the average potential (15.54 ev)

Convolution with detector sensitivity

Background rates

- Background rates for each partition
- Taking a sensitivity of 1 for (electrons+positrons)
- Numbers used in the simulation (digitization)

Partition	n [Hz/cm ²]	$\gamma~[{ m Hz/cm^2}]$	e^{\pm}	Combined [Hz/cm ²]
1	39	37	238.1	314.1
2	31	31	137.9	199.1
3	26	26	91.8	143.8
4	21	24	100.5	145.5
5	17	22	82.1	121.1
6	14	16	71.7	101.7
7	11	12	51.0	74.0
8	8	10	51.3	69.3

Impact on the Trigger

- L1 muon momentum resolution can be improved with a second detector if we can measure the "bending angle"
- GE1/1 in reagion with least scattering, strongest B:
 - Increase "lever arm" (to ~20-46 cm)
 - High point resolution of GEM detector improve over the limited p_T resolution.
- Excellent discrimination power to distinguish soft muons from hard ones
- Larger lever arm for "far" chambers provides even better separation

Muon selection using the bending angle

• Level-1 Muon Track Finder candidate (without requirements on the reconstructed momentum of the candidate) with signal in stations GE1/1 and ME1/1

Lowering thresholds with GEM

CSC only: at least 2 CSC stations with hits + presence of a track in ME1/1:

• Muon L1 rates increase with $|\eta|$, as the momentum resolution decreases.

GEM+CSC combined trigger:

Improve the momentum resolution and reject background without much loss of efficiency

Reconstruction status

0. Digitization step: DONE with realistic cluster and background description
1. Local reconstruction:
Reconstruction of hits and track segments inside a chamber
DONE: GEM RecHit implemented for Digital R/O
DONE: Correct RecHit uncertainty implemented
TO BE DONE: Seeding with GEMs

2. Stand-alone Reconstruction (or Level-2 in HLT) DONE: GEM RecHits included in the Reconstruction of the track inside the track fitting muon system

3. Global Reconstruction (or Level-3 in HLT) Reconstruction of the track combining the information from tracker and muon system DONE: GEMs included in the STA muon, GLB muon comes consequently

Cosmin muon, Tracker and TeV muon

TO BE DONE

Muon ID with GEMs

TO BE DONE

Digitization with Realistic Condition: Cluster Size Model

- The experimental CLS distribution have been fitted using Gamma Distribution
- The average value of the mean parameters obtained from the fit has been chosen foresare Calabria digitization model

Digitization with Realistic Condition: Cluster Size Model

Experimental data vs. MC

Two MC models have been tested:

1. The value of CLS is generated using Gamma Distribution pdf

2. The value of CLS is generated using Poisson Distribution pdf

Digitization with Realistic Condition: Background rate

- The results from Fluka simulation have been used as an input parametrization
- Comparison between the number of input noise rate and the simulated
- The input noise rate for a given eta partition is has been calculated as:
- Noise rate = Input value [Hz/cm²] x partition area [cm²] x simulated time [s]

The simulated rate has₈been taken directly from the simulation

Local reco: X-Y occupancy plots

Local Reco: recHit local error position

Roll Local reference system:

- SimHit (x_simHit, y_simHit)
- RecHit (x_recHit,0)
- Maximum ∆X due to orientation of the strips in the local system: ≈ 0.5 cm
- The only solution to evaluate the resolution is to look at $\Delta \Phi$ instead of ΔX

NB: Local error position now depends also on the CLS!

- ΔΦ = (simHit_Phi recHit_Phi) [rad]
- $\Delta \Phi$ 1 roll = 10° = 0,1744 [rad]
- ΔΦ 1 strip = 10°/384 = 0.0004427 [rad]
- Expected resolution:
 - ΔΦ/√12 = 0.000178 [rad] (if CLS size = 1.4 strips)
- Observed resolution: ~0.00018 [rad]

Local reco: Background rate from recHits

Roll	Pitch [cm]	Striplength [cm]	Area [cm^2]	Expected noise rate [Hz/cm^2] (A.Castaneda)	Observed noise rate [Hz/cm^2]	
1	0.10598	15.26	621.024	69.3	69.43 ± 0.28	1
2	0.0989986	15.26	580.116	74	74.13 ± 0.3	k
3	0.0926564	12.376	440.339	101.7	101.46 ± 0.42	
4	0.0869529	12.376	413.234	121.1	121.29 ± 0.48	
5	0.0816915	10.38	325.616	145.5	145.30 ± 0.58	(
6	0.0768721	10.38	306.406	143.8	143.88 ± 59	ļ
7	0.0721121	10.112	280.012	199.1	199.30 ± 0.78	•
8	0.0674115	10.112	261.759	314.1	313.44 ± 1.13	N

Number of clusters from background per roll

The expected and observed noise rate are compatible 21

NB: Roll 8 is at higher η!

<u>q/p resolution: core width vs. sim p</u> $q/p res = (q^{rec}/p_T^{rec} - q^{sim}/p_T^{sim}) / (q^{sim}/p_T^{rec})$ Example of 4000 σ InvRes Entries 108020 0.14 distribution Mean 0.01297 ± 0.0004652 3500 RMS 0.1527 ± 0.0003289 for 1000 0.12 Underflow 194 Overflow 115 Gev/c (with 3000 0.1 Constant 3967 ± 18.1 GEMs) Mean 0.003543 ± 0.000429 2500 Sigma 0.08 0.1012 ± 0.0005 Double 0.06 2000 gaussian reco::Muons (NoGEM) + isGlobalMuo from 100 to 0.04 1500 reco::Muons (GEM) + isGlobalMuo 1000 0.02 1000 GeV/c! 200 400 600 800 1000 1200 p_Sim [GeV/c] 500 1.05 Jorgen / σNoGEM JuvRes 1.04 -0.5 1.03 E 1.02 🗄 Inverse p_{T} resolution obtained fitting 1.01E the distribution (for each p_{T}) to a 1 0.99 gaussian 0.98 Range used: mean $\pm 2xRMS$ (as done 0.97 0.96 in AN2008 097) 0.95 200 400 600 800 000 1200 p_Sim [GeV/c] Uncertainty: statistical uncertainty in quadrature with the difference in Slight improvement at 500-1000 GeV/c sigma observed when fitting over the

• Core width is stable

reduced and whole range

Charge mis-ID prob. vs. Sim p_T

- Numerator: number of reco muons
 (matched with gen muon) in the
 GEM eta region with wrong
 charge assignent, i.e. (gen charge
 reco charge) ≠ 0
- Denominator: total number of reco muons (matched with gen muon) in the GEM eta region
- Comparison of the charge mis-ID probabilities between the standard reco and the reco with GEMs included

Where is the improvement

- q/p resolution distribution for $p_T = 1000$ GeV/c where GEMs bring the major improvement
- Peak at -2 due to muons with a good momentum measurement but wrong charge assignment is strongly reduced

GE2/1 Pilot geometry

GE2/1 Digitization

- Same GE1/1 digitization code slightly modified to take into account GE2/1:
 - Muon TOF for GE2/1 (it affects BX)
 - Allowed number of rolls up to 12 to include the simulated background
 - Three set of input parameters for the background rates in each station and roll

ONGOING: Estimation of the simulated background per station and roll (as done for GE1/1)

Local Reco in GE2/1

• Local reco from digital R/O implemented for GE1/1 works fine

Global Reco with GE1/1 + GE2/1

Mean

RMS

1.5

2.5

- The muon reconstruction software is taking without problems also the GEM recHits from GE2/1 to perform the track fitting
- More results will come soon

Station2

-0.5

0

0.5

100

80

60

40

20

-1.5

-1

n Distribution of the Tracking GEM RecHits

-1.5

-0.5

0

0.5

ME0 Pilot geometry

- Total width of 30 cm
- 2x18 chambers
- 6 layers (dZ = 0.3 cm) of GEMs
- $r_{Min} = 30.0$ cm, hard limit $\eta = 4$
- $r_{Max} = 273.0$ cm, limited by cables

-GEM Italia

ME0 Simulation

- First validation with select number of plots looks good.
- Good occupancy of ME0 SimHits over active volume

- SimHits will be used in the FastSimulation to simulate the reconstruction in ME0
- No Digitization for the moment, background rates will be included at simHit level

Conclusions

- A lot of progress in all the areas: background studies, geometry, trigger and reconstruction
- Move toward the software integration of all Muon detectors
 - GE1/1 and GE2/1 integrated in full reconstruction path
 - ME0 SimHits already available
- Every aspect of the simulation in GE1/1is validated (simHits, Digis, local and global reco)
- GE2/1 validated up to the local reconstruction
- Muon reconstruction takes advantage from GE1/1, we will see the contibution from GE2/1
- <u>Big contribution from Bari to the GEM simulation</u>

Backup

GE1/1 Geometry

Flux predictions: Fluka

- Mainly neutrons and photons.
 Contribution also from electrons, positrons, muons (charged particles)
- Post-LS1 geometry to be implemented
- Missing YE4 shielding
- Endcap calorimeter not simulated
- Expected rates could be overestimated

Detector part	R (cm)	Z (cm)	Flux (cm ⁻² s ⁻¹) for lumi=10 ³⁴ cm ⁻² s ⁻¹	Flux (cm ⁻² s ⁻¹) for lumi=10 ³⁵ cm ⁻² s ⁻¹	Flux uncert. (%)
GE1/1	150	560	~1.4 · 10 4	~1.4 · 10 5	~10%
GE1/1	180	560	~8.3 · 10 ³	~8.3 · 10 ⁴	~12%
GE1/1	250	560	~1.4 · 10 ³	~1.4 · 10 4	~22%
GE2/1	180	800	~1.7 ·10 ⁴	~1.7 ·10 ⁵	~5%
MEO	120	540	~6.3 ·10 ⁴	~6.3 ·10 ⁵	~5%
MEO	20	540	~7.2 ·10 7	~7.2 ·10 ⁸	~1%
RE3/1	200	980	~1.1 ·10 ⁴	~1.1 ·10 5	~10%

Detector part	R (cm)	Z (cm)	Flux lumi	(cm ⁻² s ⁻¹) for =10 ³⁴ cm ⁻² s ⁻¹	Flux (cm ⁻² s ⁻¹) for lumi=10 ³⁵ cm ⁻² s ⁻¹		Flux uncert. (%)	• Neutron flux		lux	
GE1/1	180	560	~5.6·10 ³		~5.6.10 4		~12%				
GE2/1	180	800	~1.3 ·10 ⁴		~1.3 ·10 ⁵			~5%			
MEO	120	540	~5.0	~5.0 ·10 ⁴		~5.0 ·10 5		~6%			
MEO	20	540	~2.8 ·10 6		~2.8 ·10 7		~2%				
• Photon flux			Detector part	R	(cm)	Z (cm)	Flux (cm ⁻² lumi=10 ³⁴	s ⁻¹) for cm ⁻² s ⁻¹	Flux (cm ⁻² s ⁻¹) for lumi=10 ³⁵ cm ⁻² s ⁻¹	Flux uncert. (%)	
				GE1/1	18	80	560	~2.5 ·10 ³		~2.5 ·10 ⁴	~20%
				GE2/1	18	80	800	~3.9 ·10 ³		~3.9 ·10 ⁴	~11%
				ME0	12	20	540	~1.3 ·10 ⁴		~1.3 ·10 ⁵	~8%
				ME0	2	20	540	\sim 6.0 \cdot 10 7		~6.0 ·10 ⁸	~1%
Detector part	R (cm)	Z (cm)	Flux lumi	(cm ⁻² s ⁻¹) for =10 ³⁴ cm ⁻² s ⁻¹	Flux lumi	(cm⁻² s⁻ =10³5 cr	¹) for m ⁻² s ⁻¹	Flux uncert. (%)	•]	Electron	
GE1/1	180	560	~6.5	·10 ¹	~6.5	·10 ²		~25%			
GE2/1	180	800	~2.4	·10 ¹	~2.4	·10 ²		~100%	+ 1	positron f	lux
MEO	120	540	~3.2	·10 ²	~3.2 ·10 ³		~13%	Position			
MEO	20	540	~5.0	·10 ⁶	~5.0	·10 ⁷		~1%			
RE3/1	200	980	~2.3	·10 ¹	~2.3	·10 ²		~21%			
• Muon flux <				Detector part	R	(cm)	Z (cm)	Flux (cm ⁻² lumi=10 ³⁴	s ⁻¹) for cm ⁻² s ⁻¹	Flux (cm ⁻² s ⁻¹) for lumi=10 ³⁵ cm ⁻² s ⁻¹	Flux uncert. (%)
				GE1/1	18	80	560	~4.5.10 1		~4.5.10 ²	~25%
			GE 2/1	18	80	800	(~2.4 ·10 ¹)	(*)	(~2.4 ·10 ²)	~100%	
				MEO	12	20	540	$(\sim 5.4 \cdot 10^{-1})$	(*)	$(\sim 5.4 \cdot 10^{2})$	~100%
				11120			0.0	(511 25)		· · · · · · · · · · · · · · · · · · ·	
			1	MEO	2	20	540	~3.8 ·10 5		~3.8 ·10 6	~3%

Neutron flux per eta partition

Cesare Calabria - Meeting CMS-GEM Italia

Neutron flux per eta partition

Cesare Calabria - Meeting CMS-GEM Italia

Photon flux per eta partition

Cesare Calabria - Meeting CMS-GEM Italia

Photon flux per eta partition

Cesare Calabria - Meeting CMS-GEM Italia

Sensitivity with Geant4: Photons

Selections (Global Reco)

- Reconstruction performed with the standard sequence and making GEMs recHits avalaible for the track fitting procedure
- RecoTracks are matched in ΔR ($\Delta R < 0.1$) to the simTracks in the eta region of interest: $|\eta|$ in [1.64, 2.1]
- Muon simTracks coming from the PV with at least one GEM (muon) simHit associated to the simTrack
- When the tracks are reconstructed including GEMs, the presence of at least one GEM recHit is required

Additional requirement:

• RecoTracks are kept only if the SimTrack-RecoTrack matching is 1 to 1