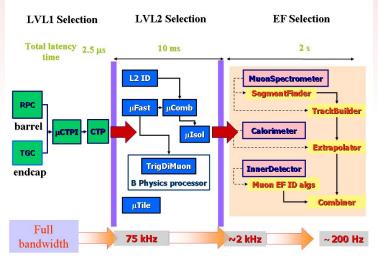
PARALLELIZATION OF ATLAS MUON TRIGGER ALGORITHM

M. Bauce, A. Messina, S. Giagu, M. Rescigno

January 12, 2014

allowin Record

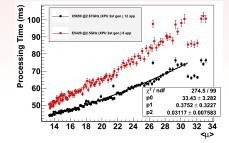
Markellander


- ► Three stage trigger system to record data from 40 MHz *pp* interactions:
 - L1 trigger is completely hardware based, partial detector information used, reduce data rate to 75 kHz
 - L2 trigger is software based, exploits almost complete event information to reduce the rate to 3.5 kHz
 - Event Filter analyses the full event information giving an output rate of ${\sim}200~\text{Hz}$
- ► Software Trigger Case Study (L2/EF): Muon Reconstruction Trigger Algorithms
 - Parallelization of three main trigger algorithms: muComb, muIso, muGirl
 - Investigate the improvements from parallel computation, in particular related to the expected high-luminosity regime
 - Study the possible improvements in the parameter resolution determination, to increase efficiency/purity of the event selections

・ロト ・同ト ・ヨト ・ヨト

Muon Trigger Flow

► Starting from next run L2 and EF will be merged in a High Level Trigger (HLT), combining various algorithms.


M. Bauce

Atlas Software Muon Trigger

- Level 2 Muon identification:
 - track reconstruction in the muon spectrometer: ~2.5 ms
 - combination with a tracks from ID: <3 ms</p>
 - track isolation in a given cone based on tracks and calorimetry: ~10 ms
- For track and energy reconstruction:
 - Algorithm execution time grows linearily with the pileup
 - Purity dependent on the width of the cone

► Find the tasks that are naturally parallelizable,

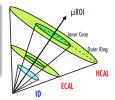
aim to a stable behaviour as pileup increase.

muComb: Track matching and FTK

- Current implementation
 - candidate reconstructed by SA-Muon as seed, extrapolation to IP using Look-Up Tables
 - combine with a track in the Inner Detector: retrieve p_T , η , ϕ
 - constraint on using loose matching criteria lead to 10% fake rates

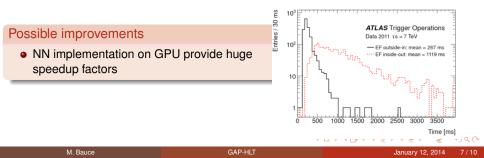
Improvements from parallelization

- Natural parallelization of the muon-track matching (pileup-dependent critical issue)
 Additional tracks to consider from FTK detector
- Can implement a fast and precise Geant4 based extrapolation, that improves the LUT method



- Current implementation
 - muon as seed (muFast, muComb)
 - Track-based isolation: exploits tracks from the silicon inner detector, discriminates based on $\sum p_T/p_T^{\mu}$ in $\Delta R < 0.2$ cone
 - Calorimeter-based isolation: evaluate the energy deposit in a cone with $\Delta R_{outer} < 0.4$ (EM+HAD), then discriminate based on $\sum E_T(outer) \sum E_T(inner)$
 - muon energy loss subtracted through the calorimeter using a back-extrapolation of the trajectory

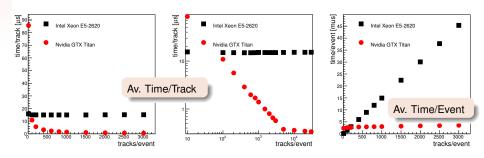
Improvements from parallelization


- Parallel processing of full scan information from FTK:
 - improves track isolation
 - pileup-dependent corrections to reconstructed parameters (already in offline)

- ► Inside-out tracking algorithm, called muGirl:
 - NN-based identification of muon candidate starting from an ID track, look for a segment match in the muon spectrometer
 - Better efficiency than an outside-in algorithm in reconstruction of low-p_T muons (not crossing all of the spectrometer): interesting for *B*-physics analysis.

- Currently working for trigger algorithm parallelization
- Extract from the Atlas framework a standalone version from test (then include in the framework using the APE server)

M. Bauce


▶ ৰ ≣ ▶ টি ∽ি ৭ (January 12, 2014 9/10

<ロ> <回> <回> <回> < 回> < 回>

- ► Track fitting on GPU first test on the GAP server in Rome:
 - Input: raw track candidates from Inner Detector Rol
 - Parallel fit of an increase number of track

- GPU implementation less dependent on the track multiplicity:
 - promising for upcoming data taking conditions, with increased luminosity.