

SPES: Steps toward the Physics cases

Providing the SPES Users information about beams, currents & contaminations

F.G. & Jose Javier Valiente SPES Scientific Support

1st Meeting of the Technical Advisory Committee 22-23 January 2014

SPES for USERS

to Meeting of the 22

Connite

- One can register as a SPES User to have updated news
 - https://web2.infn.it/spes/
 - A new call for LOIs has been launched @ the end of 2013
 - DEAD LINE March 14th 2014
 - > The Second International Workshop will be held:
 - 26-29 May 2014 @LNL

Evaluation of the RIB production & trasportation

exotic beams for science

- Evaluation of the induced radioactivity in SPES (safety, radioprotection & risk evaluations) \rightarrow BERTINI -RAL (FF cross sections)
- Evaluation of the RIBs intensities @ 1+ (low energy) physics) & after the LINAC_ALPI re-acceleration (user experimental target (UET)) - BERTINI - ORNL (FF cross sections)
- Evaluation of beam purity & contaminants @ the user UET and along the accelerator transport line

Where do we start from \rightarrow common interest to evaluate radioactivity/contamination & RIB production but with different aim:

1. Radioprotection & safety Purposes: evaluation of the worst cases \rightarrow maximization of currents to evaluate hot spots & beam line contaminations \rightarrow used OVERESTIMATION 2. RIB productions evaluation & user info ightarrowto be used more Realistic numbers

Main fission (p-> 238U) fragments

Production target

- Characterized by:
- Material of the target (production yield)
- Release time (≈1s for Fast Targets)
- Vapour pressure

lon source target

- Characterized by:
- Ionization efficiency
- Emittance
- The SELECTIVITY of the source depends on the ionization efficiency of each element.

Yield of a nuclear species

$$Y = \sigma \cdot \Phi_p \cdot N \cdot \varepsilon_d \cdot \varepsilon_e \cdot \varepsilon_i \cdot \varepsilon_t$$

It depends on \rightarrow half-life, cross-section, proton flux, diffusion and effusion time, ionization and transport efficiencies

Calculated with **MCNPX** Considered the release and ionization efficiency in agreement and re-scaled on **HRIBF** experimental values and currents (200µA/5µA)

BERTINI - ORNL (FF cross sections)

exotic beams for science

https://web2.infn.it/spes/index.php/characteristics/spes-beams-7037/spesbeamstable

/		ì
N	FN	1
	Istituto Nazionale di Fisica Nucleare	

Light ions @ SPES \rightarrow

Still to be correctly evaluated for SPES (work in progress)

SPES - First period UCx 5 μ A Intensity - then SiC/B₄C Higher Intensity (100-200 μ A)

lsotope	Α	Z	Ν	Life time	Yields (HRIBF)	Q⁺	Production Target	
Be*	7	4	3	4.60E+06	2.E+07 **	3	B ₄ C target – oxides LIS-FEBIAD	
Be*	10	4	6		3.E+07 **	3	B ₄ C target – oxides	
F *	17	9	8	6.48E+01	2.E+07 **	5	HfO ₂ , ZrO ₂ target	
F*	18	9	9	6.58E+03	2.E+06 **		Al ₂ O ₃ target FEBIAD	
Na*	21	11	10	2.25E+01		5	Al ₂ O _{3.} – SiC - CeS target SIS	
Na*	22	11	11	2.60E+00		5	AI_2O_3 – SiC - CeS target	
Mg*	22	12	10	3.86E+00		9	Al ₂ O _{3.} – SiC - CeS target LIS-FEBIAD	
Mg*	23	12	11	1.13E+01		9	AI_2O_3 – SiC - CeS target	
Al*	24	13	11	2.05E+00		7	SiC , CeS, Nb ₅ Si ₃ targe SIS +LIS	
Al*	25	13	12	7.18E+00	1E+04 **	7	SiC , CeS, Nb ₅ Si ₃ target	
Al*	26	13	13	6.35E+00	1E+04 **	7	SiC, CeS, Nb ₅ Si ₃ target	
Si*	26	14	12	2.21E+00	1E+03 **		Al ₂ O _{3.} – CeS target FEBIAD	
Si*	27	14	13	4.16E+00	1E+03 **		AI_2O_{3} – CeS target	
P*	29	15	14	4.10E+00			SiC, CeS target FEBIAD	
CI*	34	17	17	1.53E+00	5E+03 **		$Ce_2S_3 \in CeO_2 target - (hygrosc.)$	
					** available beams intensities at HRIBF with Ep=40-50MeV			
α		5				and Direct I	SOL targets. @SPES at least a factor 10	
						improveme	nt it is expected.	
			1					

https://web2.infn.it/spes/index.php/characteristics/spes-beams-7037/spesbeamstable

1st Meeting of the Technical Advisory Committee 22-23 January 2014

exotic beams for science

Evaluation of the induced radioactivity in exotic beams for science **SPES**

e 23 Jana Adison Committee

- Aim \rightarrow Final Report
- Prepared under coordination of Jose Javier Valiente Dobon & F.G. •
- Verified by: Demetre Zafiropoulos & Gianfranco Prete •
- Final Approval: Gianfranco Prete (SPES coordinator) •
 - Method \rightarrow group coordinated by J.J. Valiente Beam production \rightarrow **A. Monetti** (MNCNPX + Mathematica) Beam transportation \rightarrow M. Comunian Radioprotection Issues -> L. Sarchiapone Radioactivity in the Pumping system \rightarrow A. Porcellato General Considerations **Risk Analysis** 1ª Masting of the 22.2

IN	FN Istituto Nazionale di Fisica Nucleare	Framewo calculati A. Monetti -	ork of ONS SPES Targ	the (Mathlab) et group	exotic bea	SPES/ ms for science
		PAR		RS		
	Release Time	T₀ Isotopic Production	Source Extrac	e Efficiency tion	WF Separation	
		lsotopes T_{1/2}	Efficie	ency	WF Efficiency	
			INPUT			
	Mass & Cha elen (RIB & cor	arge of the nent ntaminants)	Source (SIS, LIS	type , PIS) (ii	Temperature n case of SIS or LIS)	
		C	UTPUT			mittee
	Production @	Release Time		FC1 Currer (after 1 ⁺ io	nt Values nization)	nice haison a
	Curre Wien @ t	ent Values in FC Filter) & Curren he experimenta	2 (after t Values Il area	E purity/co	Beam Intamination	A TRETAIN

Beam proposed for Radioactivity Evaluations

exotic beams for science

Zafiropoulos talk

See later D.

1st Meeting of the Technical Advisory Committee 22-23 January 2014

The test cases in term of **radioprotection** and **safety** have been chosen according to:

- 1. Highest half life of contaminant isotopes
- 2. Highest beam currents after the Target Bunker
- ⁹⁰Rb Contaminant ⁹⁰Sr half life 28 years
- ¹³⁵I Contaminant ¹³⁵Cs half life 2·10⁶ years
- ¹³⁷Te Contaminants ¹³⁷Cs half life 30 years
- ⁹⁴Kr High current
- ¹³⁸Xe High current
- ¹³²Sn, ¹³⁴Sn Highly requested

Surface Ion Source (SIS) is only used to ionize the element of the first group (Rb, Cs) \rightarrow good selectivity Laser Ion Source (LIS) is used to ionize most of the elements produced in the target Plasma Ion Source (PIS) is used for the elements with high ionization energy \rightarrow low selectivity, bad emissivity

exotic beams for science

1st Meeting of the Technical Advisory Committee 22-23 January 2014

User Information for next Lols

More cases are needed to give a realistic prediction to USERS according to:

- 1. Beam currents after the first selection (W.F. + 90° dipole magnet $\Delta M/M=1/150$)
- 2. Beam currents after the second selection (C.B + $\Delta M/M = 1/1000$)
- 3. Contaminants as a function of the kind of isotope (nuclear chart region, Relative yields & life time, Source system, Magnetic Separators.
- 4. Evaluation of HRMS selectivity & efficiency for the selected Ion

From the previous Lols (2010):

- ¹³²Sn, ¹³⁴Sn Highly requested
- Rb, Cs first day isotopes (low current operation)
- Light isotopes (high current operation with different Carbides)

- Cu, Zn isotopes (see next)
- Kr, Se, Ge, Y

FIRST DAY BEAMS @ SPES No HRMS & Beam Cooler

Some examples which are under consideration:

- \cdot Using the LIS \rightarrow
- Zn beams (mass range 72-80) re-accelerated Beam Intesities from 10^5 to 10^3 pps
- Ga beams (mass range 79-83) re-accelerated Beam Intensities from 10^6 to 10^4 pps

Direct Reaction Measurement in inverse kinematics in the N=50 region (for example ${}^{81}Ga+d \rightarrow {}^{80}Zn+p$; ${}^{79}Zn+d \rightarrow {}^{80}Ga + He$),

Important to study the **Neutron Shell Closure effects**. Important for **astrophysics**: characterization of excited level of importance for the **r-process**.

• ⁷⁵Cu beam , Coulomb Excitation \rightarrow to study the Tensor Force nature of the Nuclear interaction. This nucleus has 4 neutron less and 1 proton more than the double magic ⁷⁸Ni.

Studying the region around ⁷⁸Ni is of paramount importance especially for the r-process \rightarrow important "waiting point".

Some more important cases: Coulomb excitation of ⁹⁸Sr e ^{97,99}Rb (deformation region: proton occupy the fp shell and neutrons the gds).

Some more cases can be studied even at low selectivity using specific "event tagging" systems (under study) \rightarrow Downstream Ionization Chambers (up to (<10⁴ - 10⁵ pps) or MCP_tof_systems etc.

- Verification of contaminants through Characterization Stations (see later)
- Studying & application of Purification Methodes (see HRIBF & ISOLDE)

Learning from others: Purification methods @ HRIBF

2. Recent HRIBF Development - Isobarically Pure¹³²Sn Beams Now Available

Recent measurements have shown that isobarically pure beams of Sn isotopes can be delivered to experiments at the HRIBF. The Sn atoms are produced via proton-induced fission in a uranium carbide target and transported to an electron-beam-plasma (EBP) ion source. In the presence of sulfur vapors, the SnS molecule forms and is ionized and extracted from the EBP ion source as SnS^+ , which is then converted to Sn⁻ in the Cs-vapor charge-exchange cell and delivered to the tandem electrostatic accelerator. The Sn beams produced in this manner are pure (>99%) with no detectable contamination from Sb and Te isotopes. When Sn isotopes are extracted from the ion source as Sn⁺ ions, they comprise a small fraction of the total beam delivered to the experiment (e.g. for A=132, the beam composition is Te -

Fig. 2-1 - Positive-ion yields for Sn isotopes from a UC target at UNISOR.

INFN

87%, Sb - 12%, and Sn - 1%).

Istituto Nazionale di Fisica Nucleare

> Importance of tagging system

Contamination information

RIB Injector Operations and Development

During this reporting period, we delivered the following neutron rich beams to the Recoil Mass Spectrometer (RMS) in Robinson Hall using the uranium-carbide-target-electron-beam-plasma ion source:

exotic beams for science

Isotope	Intensity (ions per second)	Contaminant Intensity (ions per second)	Energy (MeV)	Charge State	
⁷⁸ Ge	4.5x10 ⁵	1.1x10 ⁶	174.5	11	
⁸⁰ Ge	1.8x10 ⁵	1.6x10 ⁶	179	11	
¹³⁴ Te	1.7x10 ⁶	7.2x10 ⁵	396	16	
¹³⁴ Te	3.9x10 ⁵	1.6x10 ⁵	530	14/26	
¹³⁴ Te	1.8x10 ⁵	7.5x10 ⁴	560	15/28	
¹³⁶ Te	2.5x10 ⁵	2.5x10 ⁵	396	16	
¹³⁸ Te	not observed	1.9x10 ⁶	396	16	

Figure 4-2: (a) Ion chamber range vs. deposited energy used to identify Z for the A=78 mass. measurement. (b) Position measurement in the MCP where position has been determined element by element. Peaks are normalized to the same area, and do not represent the actual relative intensities. 1st Meeting of the Technical Advisory Committee 22-23 January 2014

E. Rapisarda et al. PRC 84, 064323 (2011)

The resonant laser-ionization technique employed in this work proved to be a very efficient and selective method for producing neutron-rich Ca beams, as no isobaric contaminants other than Ga were present in the beams. The amount of Ga isobar in each of the beams of interest was determined.

Scientific program: Characterizarion & β-decay study

INFN

Some Tape Station systems for radioisotopes identification are under development @ SPES.

The tape system can be associated to the target-source system comprehensive of the first selection stage, allowing the measurement and the characterization of the implanted radio-isotopes even down to low intensities.

The irradiated zone is transferred in front of the Ge-detectors for γ -ray counting, while a new implantation can take place over a new region of the tape.

One of these stations is foreseen to be implemented for β -decay studies with non accelerated beams

1st Meeting of the Technical Advisory Committee 22-23 January 2014

di Fisica Nucleare

BEAMS Table \rightarrow

User Information for Lol

- Reformulate a TABLE to provide **more complete** info to users with the prediction of :
- **RIB Currents** (low, medium & high proton current on UCx and other targets like B_4C and SiC) \rightarrow new simulations \rightarrow scaling for efficiencies considering more specific parameters (efficiencies, life times, decay chains) for every isotope
- possible contaminants and relative predicted yields → GEANT4/FLUKA + MathLab upgraded framework
- Comparison with previous facilities (ISOLDE, HRIBF, ALTO, iTHEMBA) \rightarrow literature search, collaborations

						[/0]		
i.e. specific			138	Xe	20+ (21+)	10,9 (6,2)	2012 (2005)	6
Charge Breeder	130	132	134	Sn	21+	6	2005	6
efficiencies			98	Sr	14+	3.5	2005	
erriciencies			94	Kr	16+(18+)	12(8,5)	2013	5
	90		99	Y	14+	3.3	2002	6
	74		80	Zn	10+	2.8	2002	7
		81	82	Ga	11+	2	2002	7
	90	91	92	Rb	17+	7.50	2013	5
			34	Ar	8+(9+)	16,2(11,5)	2012 (2013)	3
a p ov	& espec	So ially 2	urce → La	lon ser i	izatioı ioniza	n efficier tion effic	icies	etc.

Mass Range

n	d re .ab ı	talk	nmittee							
u: la	s fac abor		nian	sory Cor						
	ION	Q		tall	Advie					
	Xe	20+ (21+)	10,9 (6,2)	2012 (2005)	6.57	6.90	7	7 2	nical	
	Sn	21+	6	2005	6.19	6.38	7	i di	Jar Jar	
	Sr	14+	3.5	2005	7	7		5	Ч Ч Ч	
	Kr	16+(18+)	12(8,5)	2013	5.22	5.88	ate	drig	the 22-2	
	Y	14+	3.3	2002	6.43	7.07		ζ I	5	
	Zn	10+	2.8	2002	7.40	8.00		X	Gui	
	Ga	11+	2	2002	7.36	7.45	S A	7	let	
	Rb	17+	7.50	2013	5.29	5.41			Me	
	Ar	8+(9+)	16,2(11,5)	2012 (2013)	3.78	4.25	<u>v</u>		1 st	
e Ionization efficiencies										

1st Meeting of the Technical Advisory Committee 22-23 January 2014

exotic beams for science

See

