C. Distefano, INFN-LNS Users committee 2013-12-06

NEMO AND KM3NET

Carla Distefano – INFN, LNS

The giant-scale detector KM3NeT

Faintness of neutrino fluxes and small interaction probabilities oblige to use large natural target such as sea-water: a volume of 5 km³ of seawater will be instrumented with optical detectors.

5 building blocks 115 Detection Units (DU) 750 m DU height 180m DU distance 5 km³ volume Budget 250 M€ KM3NeT-Italia is funded by

INFN since 1999 (NEMO) In 2010 the project was awarded with a PON grant of 20.8 M€

KM3NeT is a EU funded ESFRI Infrastructure since 2006. INFN leaded the Preparatory Phase

The Capo Passero Site infrastructure

C. Distefano, INFN-LNS Users committee 2013-12-06

Shore Laboratory: Electronics Labs Data Acquisition Room Control Room Guest House 4 rooms Power Feeding Equipment (UPS protected) 1Gb/s (upto 10) Optical-fibre link GARR-X

Submarine cable and infrastructure: 96 km 20 fibres ITU655-NZDSF Single conductor with DC-sea return Cable Termination Frame: Medium Voltage Converter: 10kV to 375V 3 ROV-mate e.o. output connectors

Off-shore Laboratory: NEMO Phase-2 tower since 23 March 2013 Depth=3458 m

The NEMO Phase-2 tower: main components

8 floors

- 8 m bars, vertical dist. = 40 m, H_{tot} = 450 m
- 32 OM, 14 hydrophones
- oceanographic instrumentation

The OM: 10" Hamamatsu R7081, Front End Module, Time Calibration, LED beacons

The deep-sea field

C. Distefano, INFN-LNS Users committee 2013-12-06

NEMO-Phase2 under test in Malta before boarding on "Nautical Tide"

The tower on the "Nautical Tide"

The "Nautical Tide" ROV and its launching system

And a state of the state of the

MARRIEL CARGO

1

Inspecting the tower with the ROV after 6 months

Brief summary of the status

13

- In operation since the deployment date (23 March 2013)
- All Optical transmission parameters OK
- Optical Modules
 - 31 out of 32 OMs are sending data (1 OM internal electrical malfunction)
- Acoustics (in coll. with France: CPPM, Spain: UPV, Germany: ECAP)
 - No hydrophones on floor 5
 - 2 Piezo on floor 8
 - All hydrophones are sending data
 - LBL: 2 external beacons (autonomous) and 1 tower base beacon (autonomous clock) working, 1 tower base beacon (triggered) under commissioning
- Time calibration (in coll. with Spain: IFIC)
 - Led-beacon on floors 1-4, working
 - Tower base laser-beacon under commissioning
- Environmental instrumentation
 - 2 CTD probes working and sending data
 - I Current metre working and sending data
 - 8 Compasses working and sending data
- DAQ and TRIGGER system working
- □ Slow Control working

PMT Rate Monitoring

- The rate is sampled once per second by the PMT Front-End electronics;
- \square Rate is measured in a time window $\Delta t=10$ ms;

- Baseline values are quite constant for over 8 months;
- There is a small burst percentage.

CTD probes

- Two CTD probes: Conductivity, Temperature, Pressure and Depth, Density, Salinity, Sound Velocity;
- Both working;
- Sampling every 10 min;
- Depths and sound
 - velocity used as input
 - for positioning
 - algorithm.

DCS probe and Compasses

Inertial currents are evident at the same time in b.f., current intensity and heading variations

Acoustic detection: status

17

Reconstruction with acoustics pos.

07/05/2013 00:00 UTC **Reconstruction possible with accuracy O(1m)**

Muon Triggers

C. Distefano, INFN-LNS Users committee 2013-12-06

Data taking and Shifts

- 20
- The tower takes data continuously (h24). It's controlled by automatic systems and monitored by a shift crew during the daytime.
- The shift crew is composed of two persons, responsible of the operation, calibration and monitoring of the detector for a period of 1 week.
- All INFN sections participating to the experiment (Bari, Bologna, Catania, Genova, LNF, LNS, Napoli, Pisa, Roma, Salerno) contribute to the shifts.
- Up to August: only local shifts. Since September: 50% of shifts in remote.

Live time and accumulated events

21

Live time and total number of events accumulated since April 16 2013

Atmospheric muon analysis: first results

22

- Post Trigger files selected between 2013-06-22 and 2013-07-17.
- Reconstruction rate stable in time. Mean value of 0.0065 Hz (consistent with Depth=3500m).
- Agreement with MC but excess in simulations: under investigation.
- In progress: analysis of the whole data set

The future

C. Distefano, INFN-LNS Users committee 2013-12-06

IceCube Neutrino Observatory reports first evidence for extraterrestrial high-energy neutrinos.

28 neutrino candidate events, substantially more than the expected from atmospheric backgrounds (4σ level).

KM3NeT Phase-1 at Capo Passero Site

- B Towers + 24 Strings
- □ New CTF with 5 outputs (4 fo, 2 e)
- □ Up to 5 Secondary JB
 - I SJB x 8 towers
 - 2 SJBs x 12+12 strings
 - I SJB for EMSO

The NEMO Phase-3

25

- 8 towers
- 14 floors/tower
- 8 m bars, vert. dist. = 20 m, H_{tot} ~ 450 m
- 6 OMs + 2 hydrophones/floor
- oceanographic instrumentation
- towers at ~ 100 m horiz. dist.

Shorter vertical distance and larger number of PMT/floor → lower energy threshold

Multi-PMT DOM Strings

26

Digital Optical Module 31 small, 3" PMTs in one glass sphere Photon counting

Detection Unit with 18 storeys 36 m inter-storey distance Compact deployment

Prototype DOM tested successfully on ANTARES instrumentation line

Prototype DU with 3 DOMs to be deployed in Capo Passero in March 2014

Capo Passero Site Future Layout

27

KM3NeT and EMSO

Common efforts with the Earth and Sea Science Community

Real Time Environmental Monitoring

Toulon, Sicily and Hellenic: sites of common interest for KM3NeT and EMSO

Oceanography (water circulation, climate change):

Current intensity and direction, Water temperature, Water salinity ,...

Geophysics (geohazard):

Seismic phenomena, low frequency passive acoustics, magnetic field variations,... Biology (micro-biology, cetaceans,...):

Passive acoustics, Biofouling, Bioluminescence, Water samples analysis,...

The Catania Test Site: a multidisciplinary deep sea-lab

29

North: 4 LBW hydrophones 2 LF hydrophones CTD, ADCP, Seismometers magnetometers pressure gauges GPS time stamping

South: 4 LBW hydrophones Underwater GPS time stamping

Summary

- 8 storey tower deployed on March 23 2013
- Operational since then
- First results and in particular
 - Very low background rates (compatible with 40K background with few bioluminescence bursts)
 - Acoustic positioning: still in progress but accuracy O(1m) reachable
 - First results from muon track reconstruction analysis
- Toward KM3NeT telescope
 - Nemo Phase-3: an 8 tower detector (2014)
 - PPM Detection Unit (March 2014)
 - KM3NeT Phase-1: 8 towers plus 24 strings equipped with Multi-PMTs (2015)
 - km³-scale detector before 2020