Cosmic-ray physics at LHC: the LHCf experiment

Massimo Bongi, for the LHCf collaboration

INFN Florence, 16th Dec 2013

Electro-magnetic process => Same rigidity spectrum for different nuclei

In term of 'Energy,' heavier particles have Z times higher energy than protons

Over GCR max energy, Extra-galactic CRs appear

- Questions
 - ⊕ End of GCR
 - Turn over from GCR to EGCR
 - Cutoff (acc. Limit, proton GZK, ion GZK)

- Mass vs. Energy

 - Light to heavy over knee
 - Heavy to light around ankle
 - Light or light to heavy around cutoff

(Kampert and Unger, Astropart. Phys., 2012)

High Energy Cosmic Rays

Extensive air shower (EAS) observation

- longitudinal distribution
- lateral distribution
- arrival direction

(air shower development)

Astrophysical parameters

- spectrum
- composition
- source distribution

- **X**_{max}: depth of shower maximum in the atmosphere
- **<X**_{max}**>** gives information on the CR composition

Uncertainty of hadron interaction models

Uncertainty in the interpretation of $\langle X_{max} \rangle$

Tuning of hadron interaction models after the first LHC data

How accelerator experiments can contribute?

1) Inelastic cross section

If large σ : rapid development If small σ : deep penetrating

2 Forward energy spectrum

If softer rapid development If harder deep penetrating

3 Inelasticity $k = 1 - \frac{E_{lead}}{E_{avail}}$

If large k (π⁰s carry more energy)
rapid development
If small k (baryons carry more energy)
deep penetrating

Calibration of hadron interaction models at LHC

 $E_{lab} \sim 4 \cdot 10^{14} \, eV$ $E_{lab} \sim 3 \cdot 10^{16} \, eV$ > p-p 450 GeV + 450 GeV p-p 3.5 TeV + 3.5 TeV → $E_{lab} \sim 9 \cdot 10^{16} \, eV$ p-p 6.5 TeV + 6.5 TeV

- Total cross section
- Multiplicity
- ← TOTEM, ATLAS, CMS
- ← Central detectors
- Inelasticity/Secondary spectra ← Forward calorimeters (LHCf, ZDCs)

pseudo-rapidity $\eta = -\ln(\tan(\theta/2))$

LHCf experimental set-up

LHCf detectors and performances

Sampling and imaging E.M. calorimeters

- **Absorber**: W layers (44 r.l , 1.55 λ_1 in total)
- Energy measurement: plastic scintillator tiles
- **4 tracking layers** for imaging: XY-SciFi (Arm#1) and XY-Silicon μ-strip (Arm#2)
- Each detector has two independent calorimeter towers
- \rightarrow reconstruction of $\pi^0 \rightarrow \gamma \gamma$ events

Performance

Energy resolution (> 100GeV)

 $< 200 \mu m (Arm#1) and ~ 40 \mu m (Arm#2)$

< 5% for γ and \sim 30% for **n Position resolution**

Front Counters

- thin scintillators 80x80 mm²
- monitoring of beam condition
- background rejection
- Van der Meer scan

γ₁(E₁)

 $\gamma_2(E_2)$

Detection of a π^0 in Arm#2

50

Determination of **energy** from total energy release

PID from shape

Determination of

the impact point

Transverse profile measured by silicon µ-strip layers

250

300

Measurement of the opening

angle of gamma pairs

Identification of multiple hit

Reconstruction of π^0 mass $M_{\pi^0} \cong \sqrt{E_{\gamma 1} E_{\gamma 2}} \cdot \theta$

200

150

LHCf Status

Done

- ⊕ 0.9, 2.76, 7 TeV pp collision, 5 TeV pPb collision data taking
- Pi0 spectra at 7 TeV published
- Performance at 7TeV published

- PLB 715 (2012) 298
- PLB 703 (2011) 128
- PRD 86 (2012) 092001
- IJMPA 28 (2013) 1330036

On going

- Neutron spectra at 7TeV
- ⊕ Pi0 and UPC spectra at 5TeV pPb
- Detector upgrade for 13 TeV pp

- ◆ 13TeV pp collision in 2015 (operation plan in discussion)
- Discussion for light ion collision at RHIC and LHC

Comparison of single γ data at $\sqrt{s} = 7$ TeV with hadronic interaction models (pre-LHC versions)

- No model can reproduce the **LHCf data** perfectly
- **DPMJET**, PYTHIA are in good agreement at high- η for 0.5<E $_{\nu}$ <1.5TeV, but harder for E>1.5TeV
- QGSJET, SIBYLL, EPOS show reasonable agreement of shape for high η, but not for low η

Comparison of single γ data at $\sqrt{s} = 900$ GeV with hadronic interaction models (pre-LHC versions)

DATA
DPMJET 3.04
QGSJET II-03
SIBYLL 2.1
EPOS 1.99
PYTHIA 8.145

Syst.+Stat.

- No strong evidence of η-dependence
- show reasonable agreement of shape
- None of the models reproduces **LHCf data** within the error bars

Comparison of π^0 data at $\sqrt{s} = 7\text{TeV}$ with hadronic interaction models (pre-LHC versions)

- EPOS shows the best agreement with data
- **DPMJET** and **PYTHIA** have harder spectra than data
- QGSJET has softer spectrum than data

900GeV vs. 7TeV

- \checkmark normalized by the number of entries in $X_F > 0.1$
- ✓ statistical errors only

Good agreement of X_F spectrum shape between 900 GeV and 7 TeV

Cosmic-ray spectrum & Colliders

x_F scaling: a key for extrapolation

LHC single gamma data (900GeV pp / 7TeV pp)

Expected from models (5TeV, 14TeV and 50TeV)

But this comparison done in very limited phase space..

RHICf 500GeV Similar phase space to LHCf 7TeV

LHCf: future plan

$p-p \sqrt{s} = 13TeV \text{ at LHC } (2015)$

Main target: measurement at the LHC design energy.

Study of energy scaling by comparison with $\sqrt{s} = 900$ GeV and 7 TeV data.

Upgrade of the detectors for radiation hardness.

p-light ions (O, N) at the LHC (2019?)

It allows studying HECR collisions with atmospheric nuclei.

RHICf experiment at RHIC (Relativistic Heavy Ion Collider @ Brookhaven)

Lower collision energy, ion collisions.

LOI to the RHIC committee submitted.

p-p collisions:

- Max. √s = 500 GeV
- Polarized beams

Ion collisions:

- Au-Au, d-Au
- Max. $\sqrt{s} = 200 \text{ GeV}$
- Possible, d-O,N (p-O,N)
 - Cosmic ray Airknee energy

Conclusions

- LHCf is a small experiment at LHC dedicated to forward physics
 - Important for High Energy Cosmic-Ray Physics
- We have published **spectra of photons and neutral pions** for p-p interactions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 900$ GeV
 - None of the hadron interaction models that we have considered can reproduce the data within the errors, but data lie anyway between the models
 - On-going data analysis for the hadron component (neutrons)
- p-Pb run at the beginning of 2013
 - Successful data taking in p-remnant and Pb-remnant side
 - Common operations with ATLAS
 - On-going data analysis
- Future plan
 - Complete the upgrade of the detectors for radiation hardness
 - Data taking for **p-p collisions at** \sqrt{s} = **13 TeV** (2015)
 - Run **p-light ions** at LHC (2019?)
 - Operations at RHIC (p-O or p-N at lower energies)

BACKUP SLIDES

Muon excess at Pierre Auger Obs.

Depth [g/cm²]
Pierre Auger Collaboration, ICRC
2011 (arXiv:1107.4804)

Auger hybrid analysis

- event-by-event MC selection to fit FD data (top-left)
- comparison with SD data vs MC (top-right)
- muon excess in data even for Fe primary
 MC

EPOS predicts more muon due to larger baryon production

=> importance of baryon measurement

Pierog and Werner, PRL 101 (2008) 171101

Detector performances

Particle identification

- L_{90%}: longitudinal position containing 90% of the shower energy
- Photon selection based on L_{90%} cut
- Energy dependent threshold in order to keep constant efficiency ϵ_{PID} = 90%
- Purity P = $N_{phot}/(N_{phot}+N_{had})$ estimated by comparison with MC
- Event number in each bin corrected by P/ $\epsilon_{ t PID}$

- MC photon and hadron events are independently normalized to data
- Comparison done in each energy bin
- LPM effect is switched on

Common trigger with ATLAS

impact parameter vs. # of particles in ATLAS LUCID

- LHCf signal has been used to trigger ATLAS
- Impact parameter may be determined by ATLAS
- Identification of forward-only events